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Abstract: This paper investigates the nonlinear dynamic response to shocks, relying on a 

threshold quantile autoregression (TQAR) model as a flexible representation of stochastic 

dynamics. The TQAR model can identify zones of stability/instability and characterize 

resilience and traps. Resilience means high odds of escaping from undesirable zones of 

instability toward zones that are more desirable and stable. Traps mean low odds of 

escaping from zones that are both undesirable and stable. The approach is illustrated in an 

application to the dynamics of productivity applied to historical data on wheat yield in 

Kansas over the period 1885-2012. The dynamics of this agroecosystem and its response 

to shocks are of interest as Kansas agriculture faced major droughts, including the 

catastrophic Dust Bowl of the 1930’s. The analysis identifies a zone of instability in the 

presence of successive adverse shocks. It also finds evidence of resilience. We associate 

the resilience with induced innovations in management and policy in response to adverse 

shocks.  
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Agro-Ecosystem Productivity and the Dynamic Response to Shocks 

 

1. Introduction 

Dynamics is at the heart of economic development and the search for processes that 

contribute to improving human welfare. But dynamic process are typically complex, especially 

under nonlinear dynamics. Indeed, nonlinear dynamic systems can exhibit many patterns. For 

deterministic systems, this can go from reaching a unique steady state, to having multiple steady 

states, to displaying limit cycles, or even to being chaotic (e.g., May, 1976). For stochastic 

systems, the complexity increases further, making it challenging to evaluate the dynamic 

response to unanticipated shocks. The assessment of such dynamic response is highly relevant in 

economics. Some shocks are favorable (e.g., good weather, the discovery of new knowledge) 

with positive impacts on welfare both in the short run and the longer run. But other shocks have 

a negative impact on human welfare (e.g., drought, disease). The dynamic effects of such shocks 

has been of great interest to economists and policy makers. Under some scenarios, their adverse 

effects matter in the short run but dissipate in the longer run. But under other scenarios, their 

longer term impacts can be sustained and large. An example is the case of poverty traps which 

associate poverty with reduced investment and meager prospects for economic growth (e.g., 

Barrett and Carter, 2013; Kraay and McKenzie, 2014). Another example is from ecology: under 

some circumstances, an ecosystem may fail to recover under extreme shocks (e.g., Holling, 

1973; Common. and Perrings, 1992; Perrings, 1998; Gunderson, 2000; Folke et al., 2004; 

Derissen et al., 2011). Other examples include cases of economic collapse with large and lasting 

adverse effects on society (e.g., Tainter, 1990; Diamond, 2005). In these examples, the outcomes 

are all undesirable. But the assessment of these situations can be challenging for two reasons: 1/ 



3 

 

such adverse scenarios may not be very common; and 2/ the dynamics of the underlying process 

is often complex and poorly understood. This suggests two useful directions of inquiry. First, we 

need to refine our tools used in dynamic analysis. Second, we need to explore applications that 

may provide new insights into economic dynamics. These two directions are key motivations for 

this paper.     

This paper studies nonlinear dynamics in economics. It makes three contributions. First, 

it explores new ways to analyze stochastic dynamics. The focus is on representations of 

stochastic dynamics that allow for flexible dynamic response to shocks. The analysis relies on a 

threshold quantile autoregression (TQAR) model (Galvao et al., 2011; Chavas and Di Falco, 

2016). The TQAR model is empirically tractable. And it is flexible: it allows dynamics to vary 

with both current shocks and past states. As such, a TQAR model can be used to assess how 

dynamics can differ across situations (as reflected by different shocks and different states). This 

makes it particularly appropriate for our purpose.  

A second contribution is to use our proposed approach to identify zones of 

stability/instability and to characterize resilience and traps. Resilience means good odds of 

escaping from undesirable zones of instability toward zones that are more desirable and stable. 

Traps mean low odds of escaping from zones that are both undesirable and stable. As such, 

resilience is desirable, but traps are not. We argue that the TQAR model provides a good basis to 

evaluate the resilience of a system and the presence of traps.  

A third contribution is to illustrate the usefulness of our approach in an application to the 

dynamics of an agro-ecosystem. Our empirical analysis uses historical data on wheat yield in 

Kansas during the period 1885-2012. Historically, the Western Great Plains have experienced 

many periods of severe drought (Burnette and Stahle, 2013). The worse drought occurred in the 
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1930’s leading to the Dust Bowl, a major American environmental catastrophe (Hornbeck, 

2012). Coupled with intensive land use, the drought led to major crop failure, wind erosion and 

dust storms. The impact was particularly severe in Kansas, where land erosion contributed to 

significant decrease in land value and agricultural productivity (Hornbeck, 2012). The short run 

response to the environmental destruction was mostly population migration away from the 

affected areas. But the long run effects were major and lasting. Hornbeck (2012) documents that 

soil erosion due to the Dust Bowl contributed to a decline in land value up to 30 percent in the 

long term. Wheat being the major crop in Kansas (USDA, 2015), studying Kansas wheat yield 

provides a great case study of the dynamic response to environmental shocks. Of special interest 

are the effects of extreme shocks both in the short run and in the long run. In the context of 

wheat yield, our analysis identifies a zone of instability in the presence of successive adverse 

shocks. It also finds evidence of resilience. We associate the resilience with induced innovations 

in management and policy in response to adverse shocks. This indicates the importance of 

management and policy in the dynamic response to shocks.   

 

2. Dynamics  

Consider a dynamic system evolving according to the state equations  

𝑦𝑡 = ℎ(𝑦𝑡−1, … , 𝑦𝑡−𝑝 , 𝑧𝑡),   (1a) 

𝑧𝑡 = 𝑔(𝑦𝑡−1, … , 𝑦𝑡−𝑝; 𝑧𝑡−1, … , 𝑧𝑡−𝑝),   (1b) 

where 𝑦𝑡 ∈ ℝ measures payoff at time 𝑡, 𝑧𝑡 is a vector of variables affecting the system with 

dynamics given in (1b), and 𝑝 ≥ 1. Equations (1a)-(1b) provide a general representation of 

dynamics, allowing for joint dynamics in payoff 𝑦𝑡 and in the state variables 𝑧𝑡. After successive 

substitutions of (1b), note that equation (1a) can be alternatively written as 



5 

 

𝑦𝑡 = ℎ(𝑦𝑡−1, 𝑦𝑡−2, … , 𝑔(𝑦𝑡−1, 𝑦𝑡−2, … ; 𝑧𝑡−1, 𝑧𝑡−2, … )) 

= ℎ(𝑦𝑡−1, 𝑦𝑡−2, … , 𝑔(𝑦𝑡−1, 𝑦𝑡−2, … ; 𝑔(𝑦𝑡−2, … ; 𝑧𝑡−2, … ), 𝑧𝑡−2, … )) 

= ⋯ 

= 𝑓0(𝑦𝑡−1, 𝑦𝑡−2, … ; 𝑦0, 𝑧0) (2) 

where (𝑦0, 𝑧0) are initial conditions which we take as given. Assume that the effects of lagged 

values of 𝑦𝑡−𝑗 on 𝑦𝑡 in (2) become negligible for all 𝑗 > 𝑚. It follows that equation (2) can be 

written as  

   𝑦𝑡 = 𝑓(𝑦𝑡−1, … , 𝑦𝑡−𝑝, 𝑒𝑡),   (3) 

 and 𝑒𝑡 is a random variable representing unobservable effects at time 𝑡. We assume that 𝑒𝑡 is 

identically and independently distributed1 with a given distribution function.  

Equation (3) is a 𝑚-th order stochastic difference equation representing economic 

dynamics under general conditions. Comparing equations (1) and (3), equations (1a)-(1b) are 

structural equations describing how the system evolves overt time, while equation (3) is a 

reduced form equation of the same system. While equation (3) does not reflect structural 

information about the system, it has two advantages: 1/ it provides a valid representation of the 

system dynamics; and 2/ it does not require information about the variables 𝑧𝑡. This is significant 

advantage when some of the dynamic factors affecting payoff are not observable. For this reason, 

our analysis will focus on the reduced form representation (3).   

Note that, equation (3) can be written as the first-order difference equation 

𝑤𝑡 ≡ [

𝑦𝑡

⋮
𝑦𝑡−𝑚+1 

] = [
𝑓(𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑒𝑡)

⋮
𝑦𝑡−𝑚+1 

] ≡ 𝐻(𝑤𝑡−1, 𝑒𝑡)     (4) 

where 𝑤𝑡 ∈ ℝ+
𝑚. Equation (4) can be used to characterize the nature of dynamics. Under 

differentiability, let 𝐷𝐻(𝑤𝑡−1, 𝑒𝑡) = 𝜕𝐻(𝑤𝑡−1, 𝑒𝑡)/𝜕𝑤𝑡−1 be a (𝑚 × 𝑚) matrix. Denote the 
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characteristic roots of 𝐷𝐻(𝑤𝑡−1, 𝑒𝑡) by [𝜆1(𝑤𝑡−1, 𝑒𝑡), … , 𝜆𝑚(𝑤𝑡−1, 𝑒𝑡)] where |𝜆1(𝑤𝑡−1, 𝑒𝑡)| ≥

⋯ ≥ |𝜆𝑚(𝑤𝑡−1, 𝑒𝑡)|, |𝜆𝑗| being the modulus of the 𝑗-th root, 𝑗 = 1, … , 𝑚, and 𝜆1 being the 

dominant root.  

Where equation (3) is linear in (𝑦𝑡−1, … , 𝑦𝑡−𝑚), the system exhibits linear dynamics. In 

this case, the matrix 𝐷𝐻 is constant and so are its roots (𝜆1, … , 𝜆𝑚). Consider for a moment a 

situation where 𝑒𝑡 is constant for all 𝑡. Then, under linear dynamics, the system is globally stable 

(in the sense that lim
𝑡→∞ 

𝑦𝑡 = 𝑦𝑒 for any initial condition 𝑦0) if |𝜆1| < 1 (Hasselblatt and Katok, 

2003). Alternatively, the system would be unstable if |𝜆1| > 1. When 𝜆1 is real, the dynamics of 

𝑦𝑡 has a forward path that is {
exponential 
oscillatory 

} when 𝜆1 {
> 0
< 0

}. And when 𝜆1 is complex, then 𝜆1 =

𝑎 + 𝑏 √−1 and the system exhibits cyclical dynamics, with a cycle of period [2 𝜋/𝑎𝑟𝑐𝑡𝑔(𝑏/𝑎)].  

In the general case where equation (3) is nonlinear in (𝑦𝑡−1, … , 𝑦𝑡−𝑚), the system 

exhibits nonlinear dynamics. Under nonlinear dynamics, the forward path of 𝑦𝑡 can exhibit a 

variety of dynamic patterns. For example, holding 𝑒𝑡 constant for all 𝑡, 𝑦𝑡 can eventually reach a 

unique steady state, it can have multiple steady states, it can exhibit limit cycles, or it can be 

chaotic (e.g., May, 1976). Situations of multiple steady-state equilibria have been of interest. 

Multiple steady-sates (𝑦1
𝑒 , … , 𝑦𝑀

𝑒 ) would arise if lim
𝑡→∞

𝑦𝑡 = 𝑦𝑗
𝑒 when 𝑦0 ∈ 𝑆𝑗 , 𝑗 = 1, … , 𝑀, where 

𝑀 > 1 and (𝑆1, … . , 𝑆𝑀) is a partition of ℝ. In this context, the set 𝑆𝑗 is the attractor of point 𝑦𝑗
𝑒, 

𝑗 = 1, … , 𝑀, as having initial condition 𝑦0 in 𝑆𝑗 eventually leads to 𝑦𝑗
𝑒 , 𝑗 = 1, … , 𝑀. When a 

steady-state 𝑦𝑗
𝑒 is identified as being “undesirable”, it means that it is good to avoid being in the 

set 𝑆𝑗. Examples include cases of ecological collapse in ecology (Holling, 1973) and poverty trap 

in economics (Barrett and Carter, 2013; Kraay and McKenzie, 2014).  
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Under nonlinear dynamics, both 𝐷𝐻(𝑤𝑡−1, 𝑒𝑡) and the dominant root 𝜆1(𝑤𝑡−1, 𝑒𝑡) 

depend on the evaluation point (𝑤𝑡−1, 𝑒𝑡). In general, ln(|𝜆1(𝑤𝑡−1, 𝑒𝑡)|) measures the rate of 

divergence in 𝑦𝑡 along forward paths in the neighborhood of (𝑤𝑡−1, 𝑒𝑡) (Hasselblatt and Katok, 

2003). In this context, the dynamic properties just discussed still apply but only locally, i.e. in the 

neighborhood of (𝑤𝑡−1, 𝑒𝑡): the dynamics is locally stable if the dominant root satisfies 

|𝜆1(𝑤𝑡−1, 𝑒𝑡)| < 1; and it is locally unstable if |𝜆1(𝑤𝑡−1, 𝑒𝑡)| > 1. We will make use of these 

local properties in our empirical analysis below.  

The analysis of dynamics becomes more challenging in the stochastic case: the random 

vector 𝑒𝑡 in (3) affects the path of 𝑦𝑡 over time. This is relevant when 𝑒𝑡 represents unanticipated 

shocks. In this context, a key question is: What is the dynamic response of the system (3) to a 

shock 𝑒𝑡? This is the essence of the concept of resilience. A resilient system is defined as a 

system that can recover quickly from a shock (Holling, 1973;). This gains importance in the 

presence of adverse shocks (Di Falco and Chavas, 2008; Chavas and Di Falco, 2016). For 

example, in ecology, a resilient system would recover quickly from an adverse shock; but a non-

resilient system may collapse. In economics, a resilient household would recover quickly from 

an adverse income shock; but a non-resilient household would not. While adverse shocks always 

have negative short term effects, resilience means such effects would eventually disappear in the 

longer term. But non-resilient systems would behave differently: they would see persistent 

longer term effects.  

The dominant root 𝜆1(𝑤𝑡−1, 𝑒𝑡) provides useful insights on system dynamics. We discuss 

three cases. First, consider the case where 𝜆1(𝑤𝑡−1, 𝑒𝑡) is close to 0 for all (𝑤𝑡−1, 𝑒𝑡). This 

system would exhibit little dynamics and any shock would have minor or no long term effects. In 

a second case, assume that |𝜆1(𝑤𝑡−1, 𝑒𝑡)| is positive but less than 1 for all (𝑤𝑡−1, 𝑒𝑡). Then, there 
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would be a dynamic response to any shock. But having |𝜆1(𝑤𝑡−1, 𝑒𝑡)| < 1 means that the impact 

of a shock would die down over time and eventually disappear in the long term. In this case, the 

magnitude of the dominant root remains useful. Having |𝜆1(𝑤𝑡−1, 𝑒𝑡)| close to 0 (close to 1) 

means a rapid (slow) decay of the temporal effects of a shock. In other words, a rise in 

|𝜆1(𝑤𝑡−1, 𝑒𝑡)| ∈ (0,1) corresponds to stronger impacts of a shock in the intermediate term. 

Third, consider the case where |𝜆1(𝑤𝑡−1, 𝑒𝑡)| is greater than 1 for some (𝑤𝑡−1, 𝑒𝑡). As discussed 

above, this corresponds to local instability in the neighborhood of (𝑤𝑡−1, 𝑒𝑡). A possible 

situation is that this local instability varies with the neighborhood. To illustrate, consider a 

system where 𝑁1, 𝑁2, 𝑁3 are three different neighborhoods where |𝜆1(𝑤𝑡−1, 𝑒𝑡)| < 1 when 

(𝑤𝑡−1, 𝑒𝑡) ∈ 𝑁1 ∪ 𝑁3 but |𝜆1(𝑤𝑡−1, 𝑒𝑡)| > 1 when (𝑤𝑡−1, 𝑒𝑡) ∈ 𝑁2. This system exhibits local 

stability in neighborhoods 𝑁1 and 𝑁3, but local instability in neighborhood 𝑁2. Local instability 

in 𝑁2 means that dynamics would tend to move 𝑦𝑡 away from 𝑁2. In situations where 𝑁2 is 

surrounded by 𝑁1 and 𝑁3, this would identify points in 𝑁2 as tipping points, i.e. as points where 

𝑦𝑡 would tend to escape from as they move toward locally stable neighborhoods. In this case, 

knowing which locally stable neighborhood (𝑁1 or 𝑁3) is more likely to be visited would be of 

interest. For example, if being in 𝑁1 is seen as being undesirable, then an escape from 𝑁2 to 𝑁3 

would be seen as a better scenario than moving from 𝑁2 to 𝑁1.  

These patterns are illustrated in Figure 1 under four scenarios. Figure 1 shows how |𝜆1| 

can vary with 𝑒𝑡, where higher (lower) values of 𝑒𝑡 are interpreted as favorable (unfavorable) 

shocks. The first scenario is the case where 𝜆1 is constant. This occurs when the dynamics is 

represented by a linear autoregressive (AR) process, in which case the dynamic response to 

shocks does not depend on the situation considered  Scenarios 2-4 are associated with nonlinear 

dynamics where 𝜆1 is not constant. Scenario 2 exhibits a pattern where |𝜆1| has an inverted U-
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shape with respect to 𝑒𝑡, with a zone of instability (where |𝜆1| > 1) surrounded by two zones of 

stability (where |𝜆1| < 1): a favorable zone (where 𝑒𝑡 is high), and an unfavorable zone (where 

𝑒𝑡 is low). It means that the forward path of 𝑦𝑡 would tend to escape from the instable zone. And 

in the case where there is a low probability of escaping from the unfavorable stable zone, this 

would identify this zone as a trap. Scenario 3 shows a situation where there is a zone of 

instability but it occurs only for low values of 𝑒𝑡. This is an example of resilience where the 

dynamics would move the system away from unfavorable outcomes. Finally, Scenario 4 shows a 

situation where there is zone of instability but it occurs only for high values of 𝑒𝑡. This represents 

a collapse where the dynamics moves the system away from favorable outcomes. These 

examples illustrate that many patterns of dynamics are possible.2 Note that the dynamics would 

gain additional complexities when we note that |𝜆1(𝑤𝑡−1, 𝑒𝑡)| can vary with both 𝑒𝑡 and 𝑤𝑡−1. 

The empirical challenge to evaluating these complexities is addressed in section 3 below.   

Under stochastic dynamics, a related issue is: What are the implications of dynamics for 

the distribution of 𝑦𝑡 in the long run? To address this question, note that the dynamics in (3) can 

be alternatively written in terms of a Markov chain (Billingsley, 1961; Meyn and Tweedie, 

1993). Consider partitioning the space ℝ into K mutually exclusive intervals {𝑣1, … , 𝑣𝐾}. To 

illustrate, consider the case where 𝑚 = 1. Letting 𝑀 = {1, … , 𝐾}, we have  

𝑃𝑟𝑜𝑏(𝑦𝑡 ∈ 𝑣𝑖) =  ∑{𝑃𝑟𝑜𝑏[𝑦𝑡 ∈ 𝑣𝑖| 𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑒𝑡),

𝑗∈𝑀

𝑦𝑡−1 ∈ 𝑣𝑗]  

𝑃𝑟𝑜𝑏[𝑦𝑡−1 ∈ 𝑣𝑗]}   (5a) 

for 𝑖 ∈ 𝑀. Under time invariance, equation (5a) can be written as the Markov chain model 

𝑝𝑡 = 𝐴 𝑝𝑡−1  (5b) 
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where 𝑝𝑡 = (𝑝𝑡,1, … , 𝑝𝑡,𝐾)
′
 is a (𝐾 × 1) vector with 𝑝𝑡,𝑗 = 𝑃𝑟𝑜𝑏(𝑦𝑡 ∈ 𝑣𝑗), 𝑗 ∈ 𝑀, and 𝐴 is a 

(𝐾 × 𝐾) matrix of Markov transition probabilities. The Markov matrix 𝐴 has a dominant root 

equal to 1. Under time-invariant transition probabilities, when this dominant root is unique, the 

dynamic system (5b) has a unique stationary equilibrium given by 𝑝𝑒 = lim
𝑡→∞ 

𝑝𝑡 for all initial 

conditions 𝑝0. This provides a basis to evaluate the long run distribution of 𝑦. This long run 

distribution will depend on the underlying dynamics. Again, the long run distribution of 𝑦 can 

exhibit many patterns. For example, the long run probability density of 𝑦𝑡 could exhibit a single 

peak with little skewness (e.g., under Gaussian shocks and a linear AR process). Alternatively, it 

could be skewed when the dynamics implies an escape from low outcomes (under resilience) or 

from high outcomes (under collapse). Finally, it could exhibits multiple peaks (e.g., when a 

system tends to escape from a zone of instability toward surrounding zones of stability, leading 

to a bimodal density in the long run). Again, these examples indicate that many patterns of long 

run distribution are possible, stressing the importance of a flexible approach in the empirical 

investigation of dynamics.  

 

3. Econometrics 

Consider the case where equation (3) takes the general form 𝑦𝑡 = 𝑓(𝑦𝑡−1, … , 𝑦𝑡−𝑝 , 𝑥𝑡 , 𝑒𝑡) 

where 𝑥𝑡 is a vector of explanatory variables affecting 𝑦𝑡 at time 𝑡. Define the conditional 

distribution function of 𝑦𝑡 as 𝐹(𝑣 | 𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡) = 𝑃𝑟𝑜𝑏[𝑦𝑡 ≤ 𝑣 | 𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡] =

𝑃𝑟𝑜𝑏[𝑓(𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡 , 𝑒𝑡) ≤ 𝑣 | 𝑦𝑡−1, … 𝑦𝑡−𝑚, 𝑥𝑡]. The distribution function 

𝐹(𝑣 | 𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡) is conditional on lagged values (𝑦𝑡−1, … , 𝑦𝑡−𝑚) and on 𝑥𝑡. Define the 

associated conditional quantile function as the inverse function 𝑞(𝑟 |𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡) ≡

𝑖𝑛𝑓𝑣   {𝑣: 𝐹(𝑣 |𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡) ≥ 𝑟} where 𝑟 ∈ (0,1) is the 𝑟𝑡ℎ quantile. When 𝑟 = 0.5, this 
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includes as special case the conditional median 𝑞(0.5 |𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡). Both the distribution 

function 𝐹(𝑣 |𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡) and the quantile function 𝑞(𝑟 |𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡) are generic: 

they provide a characterization of the dynamics of 𝑦 under a general specification of dynamics. 

In the rest of the paper, we will make extensive use of the quantile function 

𝑞(𝑟 |𝑦𝑡−1, … 𝑦𝑡−𝑚, 𝑥𝑡) in the analysis of the dynamics of 𝑦𝑡.  

Relying on the conditional quantile function 𝑞(𝑟 |𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡), we focus our 

attention on the case where the conditional quantile function takes the form 

𝑞(𝑟 |𝑦1, … , 𝑦𝑡−𝑚, 𝑥𝑡) = 𝑋(𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡) 𝛽(𝑟), 𝑟  (0, 1), where 𝑋() is a (1 × 𝐾) vector 

and 𝛽(𝑟) ∈ ℝ𝐾  is a (𝐾 × 1) vector of parameters. This restricts the analysis to situations where 

conditional quantiles are linear in the parameters𝛽(𝑟). This specification allows the parameters 

𝛽(𝑟) to vary across quantiles, thus providing a flexible representation of the underlying 

distribution function and its dynamics. In addition, the function 𝑋(𝑦𝑡−1, … , 𝑦𝑡−𝑚, 𝑥𝑡) can 

possibly be nonlinear in (𝑦𝑡−1, … , 𝑦𝑡−𝑚) thus allowing for nonlinear dynamics. 

In the analysis presented below, we consider an econometric model specification of the 

form  

𝑞(𝑟 |𝑦1, … , 𝑦𝑡−𝑚, 𝑥𝑡) = 𝛽0(𝑟, 𝑥𝑡) + ∑ 𝛽𝑗(𝑟, 𝑥𝑡) 𝑦𝑡−𝑗
𝑚
𝑗=1 .  (6) 

To illustrate the flexibility of this specification, note that it reduces to a standard 

autoregressive model of order 𝑚, AR(m) (e.g., see Enders, 2010), when 𝛽𝑗(𝑟, 𝑥𝑡) = 𝛽𝑗 , 𝑗 =

1, … , 𝑚, for all 𝑟 ∈ (0, 1) and all 𝑥𝑡 , i.e. when the autoregression parameters 𝛽𝑗’s are constant 

and do not vary across quantiles. When the intercept 𝛽0(𝑟, 𝑥𝑡) varies across quantiles 𝑟, this 

provide a flexible representation of the distribution function (e.g., it allows for any variance, 

skewness and kurtosis). Also, when 𝛽0(𝑟, 𝑥𝑡) varies with 𝑥𝑡, this allows 𝑥𝑡 to shift the intercept. 

But an AR(m) model is restrictive in two important ways: 1/ it is restricted to linear dynamics in 
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the mean; and 2/ it does not provide a flexible representation of dynamics in variance, skewness 

or kurtosis. Such limitations have stimulated more general specifications capturing dynamics in 

variance (e.g., the generalized autoregressive conditional heteroscedastic (GARCH) model 

proposed by Bollerslev (1986)) and non-linear dynamics (e.g., Markov switching models 

(Hamilton, 1989), threshold autoregression (TAR) models (Tong, 1990) and smooth transition 

autoregressive (STAR) models (Van Dijk et al., 2002)).  

When 𝛽𝑗(𝑟, 𝑥𝑡) = 𝛽𝑗(𝑟), 𝑗 = 1, … , 𝑚, the above specification reduces to the Quantile 

Autoregressive model QAR(m) proposed by Koenker and Xiao (2006). Unlike an AR(m), the 

QAR(m) model allows the autoregression parameters 𝛽𝑗(𝑟) to vary across quantiles 𝑟 ∈ (0,1), 

thus permitting dynamics to differ in different parts of the distribution. In the more general case, 

𝛽𝑗(𝑟, 𝑥𝑡) can vary with the explanatory variables 𝑥𝑡, allowing economic conditions to affect 

dynamics.  

In addition, considering the case where the state space ℝ is partitioned into 𝐾 subsets 

ℝ = {𝑆1, … , 𝑆𝐾}, define 𝑑𝑘,𝑡−𝑗 =  {
1
0

} when 𝑦𝑡−𝑗  {
∈ 𝑆𝑘

∉ 𝑆𝑘
} , 𝑘 = 1, … , 𝐾, 𝑗 = 1, … , 𝑚. Depending 

on the value taken by the lagged variable 𝑦𝑡−𝑗, this identifies 𝐾 regimes (𝑆1, … , 𝑆𝐾) with the 

𝑑𝑘,𝑡−𝑗′𝑠 being variables capturing the switching between regimes, 𝑗 = 1, … , 𝑚. When 𝑥𝑡 includes 

the variables 𝑑𝑘,𝑡−𝑗′𝑠, this allows the autoregression parameter 𝛽𝑗(𝑟, 𝑥𝑡) to vary across the 

𝐾 regimes, 𝑗 = 1, … , 𝑚. The general case corresponds to a Threshold Quantile Autoregressive 

(TQAR(m)) model where, for each lag 𝑗, 𝛽𝑗(𝑟, 𝑥𝑡) can vary both across quantiles 𝑟 ∈ (0,1) and 

across regimes (Galvao et al., 2011; Chavas and Di Falco, 2016). When 𝛽𝑗(𝑟, 𝑥𝑡) = 𝛽𝑗(𝑥𝑡), 𝑗 =

1, … , 𝑚, (i.e., when the autoregression parameters do not vary across quantiles), a TQAR(m) 

reduces to a threshold autoregression (TAR(m)) model (see Tong (1990)). And as noted above, a 
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TQAR(m) model includes as special cases a QAR(m) model (obtained when 𝛽𝑗(𝑟, 𝑥𝑡) =

𝛽𝑗(𝑟), 𝑗 = 1, … 𝑚), as well as a AR(m) model (obtained when 𝛽𝑗(𝑟, 𝑥𝑡) = 𝛽𝑗 , 𝑗 = 1, … 𝑚). In 

general, a TQAR(m) model is very flexible at representing nonlinear dynamics. Indeed, in a 

TQAR(m) model and for each lag 𝑗, the autoregression parameter 𝛽𝑗(𝑟, 𝑥𝑡) can vary with the 

value of the current variable 𝑦𝑡 (as captured by the quantile 𝑟), with the value of the lagged 

variable 𝑦𝑡−𝑗  (as captured by the regime-switching variables 𝑑𝑘,𝑡−𝑗′𝑠), and with the value of 

other variables in 𝑥𝑡. A TQAR(m) model will be used below in our empirical investigation of 

dynamics.  

Consider a sample of 𝑛 observations on (𝑦, 𝑋), where 𝑋 is a vector of explanatory 

variables and 𝑞(𝑟 | 𝑋) = 𝑋 𝛽(𝑟), 𝑟  (0, 1). Denote the 𝑖𝑡ℎ observation by (𝑦𝑖 , 𝑋𝑖), 𝑖 ∈ 𝑁 ≡

{1, … , 𝑛}. For a given quantile 𝑟 ∈ (0, 1) and following Koenker (2005), the quantile regression 

estimate of𝛽(𝑟) is  

𝛽(𝑟)𝑒 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 {∑ 𝜌𝑟(𝑦𝑖 − 𝑋𝑖  𝛽)}𝑖∈𝑁 ,   (7) 

where 
𝑟
(𝑤) =  𝑤 [𝑟 –  𝐼(𝑤 < 0)] and 𝐼(∙) is the indicator function. As discussed in Koenker 

(2005), the quantile estimator 𝛽(𝑟)𝑒 in  (7) is a minimum distance estimator with desirable 

statistical properties. The quantile estimator (7) applied to the dynamic specification (6) will 

provide the basis for our empirical analysis presented next.  

 

4. An Application to Wheat Productivity  

Our investigation proceeds studying the dynamics of wheat productivity in Kansas. The 

analysis involves annual wheat yield in Kansas over the period 1885-2012 (USDA, 2015). This 

covers the period of the American Dust Bowl (in the 1930’s) when the US Great Plains were 

affected by a major environmental catastrophe. The Dust Bowl was the joint product of adverse 
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weather shocks (a major drought) and poor agricultural management. The Dust Bowl is 

remembered by two of its main features: 1/ severe drought leading to crop failure and triggering 

massive migration out of the western Great Plains; and 2/ soil and wind erosion (Hornbeck, 

2012). The Dust Bowl had short term effects on agricultural production (as drought generated 

crop failure). But it also had longer effects: soil erosion had lasting adverse effects on land 

productivity (Hornbeck, 2012). Kansas has been the leading wheat producing state in the US 

(USDA, 2015). As noted in the introduction, this makes studying wheat yield dynamics in 

Kansas a great case study of the response of productivity to environmental shocks.  

The data on wheat yield (t/ha) in Kansas over the period 1885-2012 were obtained from 

USDA (2015). They are presented in Figure 2. Figure 2 shows three interesting features. First, as 

expected, the early 1930’s (corresponding to the Dust Bowl) is a period exhibiting low yields. 

Second, wheat yields have been trending upward, especially after 1940, indicating the presence 

of significant productivity growth and technological progress over the last 70 years. Third, there 

is much variability in yield over time, reflecting the impact of various environmental shocks 

(including weather shocks).  

Our investigation explores the distribution of wheat yield as if we were farmers. Since 

weather shocks are mostly unpredictable, it means that the distribution of yield is evaluated ex 

ante at the beginning of the growing season, i.e. before weather shocks become observable. In 

the ex-ante assessment, the yield distribution is thus unconditional with respect to all 

unobservable factors affecting farm productivity (including weather effects). In this context, the 

investigation of dynamic adjustments in Kansas wheat yield is presented next.  
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5. Preliminary Analysis 

We start with a simple analysis of yield dynamics. With wheat yield 𝑦𝑡 as the dependent 

variable, we first estimate simple autoregressive models. Table 1 presents the estimation results 

for alternative model specifications. Two time trend variables are included in all models: a 

general time trend 𝑡 = 𝑦𝑒𝑎𝑟 − 2000 and a time trend 𝑡1 = {
0

𝑦𝑒𝑎𝑟 − 1935
} when 𝑦𝑒𝑎𝑟 =

{
< 1935
≥ 1935

}, where 𝑡1 captures technological progress after 1935. The models include 

autoregressive models of order m, AR(m), with m = 1, 2. The AR(1) model shows that lag-1 

coefficient is 0.703 and highly significant. This documents the presence of dynamics in yield 

adjustments. The lagged-2 coefficient in the AR(2) model is not statistically significant. A 

formal Wald test of the AR(1) model as a null hypothesis against the AR(2) model gave a p-

value of 0.709, indicating that there is no significant dynamics going beyond one-period lag.  

Table 1 also reports threshold autoregressive models (TAR(m) allowing the 

autoregression parameters to vary across three regimes (𝑑𝑖 , 𝑑2, 𝑑3). The regimes are defined such 

that 𝑑𝑖,𝑡 = {
1
0

} when 𝑦𝑡  {
∈ 𝑆𝑖,𝑡

∉ 𝑆𝑖,𝑡
}, 𝑖 = 1,2,3,  with 𝑆1,𝑡 = [−∞, 𝑏1,𝑡], 𝑆2,𝑡 = (𝑏1,𝑡, 𝑏3,𝑡] and 𝑆3,𝑡 =

(𝑏3,𝑡 , ∞], 𝑏1,𝑡 and 𝑏3,𝑡 being respectively the 1/3 and 2/3 quantile of the yield distribution 

obtained from the AR(1) model reported in Table 1. Thus, regime 1 means that yield is in the 1/3 

lower quantile of the yield distribution; and regime 3 means that yield is in the 1/3 upper quantile 

of the yield distribution. In this context, having 𝑑1,𝑡−1 = 1 corresponds to situations of low lag-1 

yield where 𝑦𝑡−1 is in regime 1. And having 𝑑3,𝑡−1 = 1 corresponds to situations of high lag-1 

yield where 𝑦𝑡−1 is in regime 3. In TAR(m) models, the autoregression parameters are allowed 

to shift across the three regimes. For a TAR(1), Table 1 shows that the lag-1 coefficient is 0.409 

in regime 2, 0.507 in regime 1 and 0.407 in regime 3. Importantly, the difference in coefficients 
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between regime 1 and regime 2 (0.098) is statistically significant at the 10 percent level. This 

provides statistical evidence that yield dynamics differ across regimes. This is our first hint of 

nonlinear dynamics. We also estimated a TAR(2) model. As reported in table 1, the lag-2 

coefficients of the TAR(2) model are not statistically significant. A formal Wald test of the 

TAR(1) model as null hypothesis against a TAR(2) model gave a p-value is 0.959. Again, this 

indicates no significant dynamics going beyond one-period lag. On that basis, we continue our 

analysis based on autoregressive models of order 1.  

Note that all estimated models reported in Table 1 shows that the overall time trend 𝑡 is 

not statistically significant, but the effect of the post-1935 time trend 𝑡1 is always positive and 

statistically significant. This reflects the presence of significant improvements in agricultural 

technology over the last 70 years. Interestingly, the coefficient of the 𝑡1 variable is smaller in the 

TAR(1) model (0.017) compared to the AR(1) model (0.023). This indicates that productivity 

growth interacts with changing dynamics across regimes.       

 

6. Quantile Dynamics 

Our preliminary analysis has found statistical support for a TAR(1) specification. A 

discussed in section 3, while a TAR model allows the autoregression parameters to vary across 

regimes, it does not allow them to vary across quantiles of the current yield distribution. We now 

extend the analysis by considering a threshold quantile autoregression (TQAR) model. As noted, 

a TQAR model provides a flexible representation of nonlinear dynamics by allowing 

autoregression parameters to change both across regimes and across quantiles. This section 

focuses on an ax ante analysis of quantile dynamics. An ex post quantile analysis (conditional on 

weather shocks) is presented in the next section.   



17 

 

Table 2 reports parameter estimates of a TQAR(1) model applied wheat yield for selected 

quantiles (0.1,0.3,0.5,0.7,0.9). The variables are the same as in the TAR(1) model reported in 

Table 1. Table 2 shows how the dynamics vary across quantiles. We tested the null hypothesis 

that the regression parameters are the same across quantiles (0.1, 0.5, 0.9). With 10 degrees of 

freedom, the chi-square test value was 5.703 with a p-value less than 0.01. This implies a strong 

rejection of the TAR(1) model in favor of the TQAR(1) model. Thus, we find statistical evidence 

that the regression parameters vary across quantiles. Table 2 shows that the lag-1 coefficient 

under regime 2 is 0.687 at the 0.1 quantile. This coefficient is larger than for higher quantiles, 

indicating the presence of stronger dynamics in the lower tail of the yield distribution. Table 2 

also reports that, for the 0.1 quantile, the lag-1 coefficient differs between regime 1 (where 

𝑑1,𝑡−1 = 1) and regime 2. The difference is 0.234. Using bootstrapping for hypothesis testing, 

we find this difference to be statistically significant at the 1 percent level. This provides evidence 

against a QAR model and in favor of a TQAR specification. The lag-1 coefficient for the 0.1 

quantile is 0.921 under regime 1 (when lagged yield is low), which is much higher than under the 

other regimes. This documents the presence of much stronger dynamics in the lower tail of yield 

distribution and when lagged yield is low. This is one of our key findings: dynamic yield 

adjustments to shocks become quantitatively very different under repeated adverse shocks. As 

we show below, this is a scenario where adjustments also become qualitatively different.  

In addition, Table 2 shows the effects of the 𝑡1 trend variable are much stronger in the 

upper tail of the distribution. This indicates that technological progress has contributed to a rapid 

increase in the upper tail of the yield distribution. But such effects are weaker in the lower tail of 

the distribution. This reflects significant shifts in the shape of the yield distribution over time (as 

further discussed below).  
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To conduct robustness checks, we explored issues related to the number of lags used in 

our dynamic analysis. While Table 2 reports estimates for an TQAR(1) model, we also estimated 

a TQAR(2) model. In a way consistent with the results shown in Table 1, we found that none of 

the lag-2 coefficients were statistically significant. This indicates that the TQAR(1) model 

provides an appropriate representation of dynamics. On that basis, the analysis presented in the 

rest of the paper focuses on a model with one-period lag.  

 

7. Implications 

Our estimated TQAR(1) model provides a refined representation of the nonlinear 

dynamics of yield. As noted in section 3, it allows for flexible patterns of stability and instability. 

To explore in more details the nature and implications of these patterns, we estimate our 

TQAR(1) model for all quantiles, thus providing a representation of the whole distribution of 

wheat yield and its dynamics.  

First, we use our TQAR(1) model estimated for all quantile to evaluate the distribution 

function of wheat yield at selected sample points. The resulting simulated distribution is 

presented in Figure 3 for selected years (1950, 1970, 1990, 2010). As expected, over time, the 

distribution shifts strongly to the right, reflecting the major effects of technological progress on 

agricultural productivity. Interestingly, the yield distribution exhibits greater spread (and thus 

greater risk exposure) in 2010 than in previous years, indicating an increase in the magnitude of 

unpredictable shocks (possibly due to climate change).   

Next, using equation (4), we examine the dynamic properties of our estimated TQAR(1) 

by evaluating the associated root 𝜆 =
𝜕𝐻

𝜕𝑦𝑡−1
. Under nonlinear dynamics, this root varies with the 

situation considered. As discussed in section 2, dynamics is locally stable (unstable) at points 
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where 𝜆 < 1 (> 1). We calculated the root 𝜆 for all quantiles and all three regimes. The results 

are reported in Figure 4. Figure 4 document the patterns of nonlinear dynamics associated with 

our estimated TQAR(1) model. It shows three important results. First, from Figure 4, the root 𝜆 

is similar across all three regimes for quantiles greater than 0.3; but it exhibits different dynamics 

for lower quantiles (less than 0.3). More specifically, compared to other regimes, the root 𝜆 is 

larger under regime 1 (when lagged yield is low) and in the lower tail of the distribution. This is 

consistent with the discussion of Table 2 presented in the previous section.  

Second, Figure 4 shows that the root 𝜆 remains in the unit circle (with |𝜆| < 1) in many 

situations, including regimes 2 and 3 (when lagged yield are not low) or the absence of adverse 

current shock (for quantiles greater than 0.2). This implies that the system is locally stable in 

many situations, especially in situations excluding adverse shocks. This is an important result: 

investigating dynamics in situations around or above the median could only uncover evidence of 

local stability. As discussed in section 2, this would preclude finding any evidence of traps.  

Third, Figure 4 shows that the root 𝜆 can be larger than 1 but only in situations of 

successive adverse shocks, i.e. when both 𝑦𝑡 and 𝑦𝑡−1 are in the lower tail of the yield 

distribution. Associating 𝜆 > 1 with local instability, we thus find evidence of local instability in 

the presence of adverse shocks. This has several implications. First, we have identified a zone of 

local dynamic instability, i.e. a zone of tipping points where the system tends to escape from. 

Second, associating a zone of instability with successive adverse shocks is an important finding. 

This raises the question: Is the zone of instability associated with resilience? Or is it associated 

with a trap or collapse? It depends on the path of escape. As discussed in section 2, if the escape 

from the zone of instability is toward more favorable situations, the system would be 

characterized as resilient (e.g., as represented by Scenario 3 in Figure 1). Alternatively, if the 
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escape is toward more unfavorable situations, the system may be experiencing a trap or a 

collapse (e.g., Scenario 4 in Figure 1).  

In our case, the zone of instability occurs only under successive unfavorable shocks 

generating very low yields. It suggests that starting in this zone, there is only one place to go: 

toward higher yields. This suggests that our zone of instability may be associated with a resilient 

system that tends to escape from low productivity toward higher productivity under adverse 

shocks. Indeed, Figure 4 exhibits patterns that are similar to Scenario 3 in Figure 1. To examine 

this issue in more details, we consider the Markov chain representation of our TQAR(1) model, 

as given in equations (5a)-(5b). Using 𝐾 = 50 and evaluated under conditions occurring in 1995, 

we obtained the Markov matrix 𝐴 in (5b). The matrix 𝐴 has a unique unit root, indicating that the 

Markov chain is stationary and has a long run distribution. The second root of 𝐴 has modulus 

0.37, indicating a fairly fast adjustment toward the long run distribution. The evolution of the 

probability function of wheat yield was simulated from equation (5b), starting from a uniform 

distribution over the range of the data. Starting at t = 0, the simulated probabilities are reported in 

Figure 5 under three scenarios: in the short run (after 2 periods, t =2), in the intermediate run 

(after 4 periods, t = 4) and in the long run (after 200 periods, t =200). Figure 5 shows several 

important results. First, the adjustments toward the steady-state probability function occurs fairly 

quickly. Second, the simulated probability functions depart from the normal distribution in two 

ways: 1/ they exhibit multiple peaks; and 2/ they are skewed, with a left tail that is much longer 

than the right tail. Indeed, in all scenarios, Shapiro-Wilk tests of normality have a p-value less 

than 0.01, providing strong evidence of departure from normality. Third, Figure 5 shows that the 

probability of being in the left tail of the probability function declines fast as one moves forward 

in time (as t goes from 2 to 4 to 200). This implies a dynamic escape from unfavorable events 
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located in the lower tail of the distribution. Since escaping an unfavorable zone is the essence of 

resilience, if follows that Figure 5 documents the presence of resilience. In other words, our 

estimated TQAR(1) model applied to wheat yield dynamics has two key characteristics: 1/ a 

zone of instability occurs in the presence of successive unfavorable shocks; and 2/ resilience 

arises as the underlying dynamic process tends to escape from this unfavorable zone. The 

significance of these findings is further discussed in section 8 below.  

As discussed in section 2, the TQAR model reported in Table 2 is a reduced form model. 

While a reduced form model provides a valid representation of dynamics, it does not provide 

structural information on the nature of dynamics. In the Kansas agro-ecosystem, a major source 

of shocks comes from the weather. Indeed, the Dust Bowl was the result of a major drought that 

hit the Western Great Plains in the 1930’s. This suggests evaluating a structural model where 

weather variables are explicit determinants of Kansas wheat yield. On that basis, we also 

specified and estimated a dynamic model of wheat yield including the effects of three weather 

variables: rainfall in the previous fall 𝑟𝑎𝑖𝑛𝑓, rainfall in the spring 𝑟𝑎𝑖𝑛𝑠 and average temperature 

during the growing season 𝑡𝑒𝑚𝑝. Data on these variables were obtained from Burnette et al. 

(2010), Burnette and Stahle (2013) and NOAA (2016).3 These weather variables were introduced 

in the model both as intercept shifters and as interactions with lagged yield. These interaction 

effects allow yield dynamics to vary with weather conditions. Estimates of the associated 

quantile regression equation is presented in Table A1 in the Appendix. As expected, Table A1 

shows that weather has statistically significant effects on yield. Rainfall in the previous fall has a 

positive effect on yield, especially on the lower tail of the distribution. Temperature has a 

negative effect on yield through its interaction effect with lagged yield, especially in the upper 

tail of the distribution. This documents that both drought and high temperature have adverse 
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effects on agricultural productivity. Such results are consistent with previous research (e.g., Tack 

et al., 2012, 2015). Table A1 also shows the presence of dynamics. Lagged yield has statistically 

significant effects on current yield either directly or through its interaction with temperature.  

To evaluate the nature of dynamics in the structural model reported in table A1, we 

calculated the root of the estimated dynamic process across quantiles. Interestingly, we found 

that the root varies between -0.2 and +0.6 depending on the evaluation point. The root is always 

in the unit circle for any quantile or any weather condition within the range of data. This implies 

global stability. Thus, the dynamic model reported in Table A1 does not show any evidence of 

instability. This contrasts with the reduced form model reported in table 2 (which exhibits local 

instability as discussed above).4 While this result is somewhat surprising, it has two important 

implications. First, since controlling for weather effects implies the disappearance of instability, 

it means that there is close association between instability and weather shocks. In other words, 

our reduced-from evidence of instability must be linked with weather shocks. Second, weather 

being mostly unpredictable, we do not expect much dynamics in the determination of weather 

shocks. This indicates that any linkage between weather and yield dynamics must be because of 

the dynamic response of management and policy to weather shocks. We expand on this 

interpretation below.  

 

8. Discussion  

From our reduced form model, our first finding is about local dynamic instability arising 

but only under unfavorable shocks. This is important. It suggests that a search for local 

instability is unlikely to be successful if the analysis focuses on “average conditions”. This can 

be problematic in economic research to the extent that most econometric analyses involve 
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estimating means or conditional means. While studying the properties of means and conditional 

means can be interesting, it neglects key information related to events located in the tails of the 

distribution. In a stochastic context, our findings indicate a need to expand our analyses with a 

focus on dynamics associated with rare and unfavorable events. This is a very intuitive argument. 

On the positive side, increasing resilience is about improving the odds of escaping the long term 

effects of facing adverse shocks. On the negative side, avoiding collapse or traps is about 

reducing the odds of facing adverse conditions and increasing the odds of escaping toward better 

outcomes. All escape scenarios are about identifying local instability. Our TQAR model provides 

a good basis to support such inquiries.  

Our second finding is also very interesting: applied to wheat yield dynamics, our analysis 

uncovered evidence of resilience as local instability tends to create an escape away from 

unfavorable events toward improved outcomes. But it also raises questions about the process 

supporting such dynamics. Below, we reflect on this process and the interpretations and 

implications of our findings.  

As noted above, our analysis has relied on an ex ante analysis of yield dynamics and 

focused on assessing the distribution on yield based on information available at the beginning of 

each growing season. Since weather conditions are mostly unpredictable, we treated the effects 

of rainfall and temperature during the growing season as part of the shocks represented by the 

yield distribution function. This raises the question: what constitutes an adverse shock? Much 

research has examined the determinants of wheat yield (e.g., Olmstead and Rhode, 2011; Tack et 

al., 2015). Both rainfall and temperature are major factors affecting wheat yield (e.g., Tack et al., 

2015; Chavas and Di Falco, 2016). In particular, farming in the western Great Plains faces much 

rainfall uncertainty as it has experienced repeated periods of severe droughts (Burnette and 
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Stahle, 2013). One of the most severe drought occurred in the 1930’s: it led massive crop failures 

and to the Dust Bowl. Because of the massive soil erosion it generated, the Dust Bowl is often 

seen as an environmental catastrophe (Hornbeck, 2012). Yet, our evidence of resilience suggests 

a different interpretation.  

First, the Dust Bowl induced significant changes in agricultural management and policy. 

A major federal policy change was the creation of the Soil Conservation Service (SCS) in 1935. 

The SCS played a major role of reducing the incidence of wind erosion in the Western Great 

Plains (Hurt, 1981). The circumstances under which the SCS was created are of interest. Starting 

in 1932, severe droughts caused widespread crop failure in the Great Plains, exposing the soil to 

blowing winds and generating large dust storms. On March 6 1935 and again on March 21 1935, 

dust clouds passed over Washington D.C. and darkened the sky as Congress was having hearings 

on soil conservation legislation. This motivated policy makers to act: the Soil Conservation Act 

was signed by President Roosevelt on April 27, 1935, creating the Soil Conservation Service 

(SCS) in USDA. This was an example of rather fast policy response to a crisis.  

The Dust Bowl also stimulated significant adjustments in agricultural management. The 

SCS established demonstration projects to persuade farmers to adopt more sustainable tillage and 

cropping practices (including contour plowing, terracing, strip cropping, planting drought 

resistant crops and greater reliance on pasture). For participating farmers, the SCS programs 

contributed to improving farm practices, increasing land values and boosting farm income (Hurt, 

1981). As a result, farmers shifted land from wheat into hay and pasture; and they implemented 

new soil conservation techniques (Hornbeck, 2012, p. 1480). Such changes helped mitigate the 

adverse effects of severe droughts.  
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Second, the Dust Bowl did not start a process of desertification of the Western Great 

Plains. On the contrary, cultivated farmland increased during the 1930’s and 1940’s (Hornbeck, 

2012, 1480-1490). This indicates that the 1930’s droughts stimulated major innovations in 

agricultural management and policy. To the extent that these changes reduced the adverse effects 

of droughts, they contributed to creating a more resilient agro-ecological system.  

Thus, we associate our evidence of resilience with induced innovations in both policy and 

management that followed the Dust Bowl. This interpretation raises the question: What would 

have been the effects of the Dust Bowl without such innovations? Of course, this is a 

hypothetical scenario that we have not observed. Still, we can hypothesize about what might 

have happened. First, our evidence of resilience would likely disappear. For example without 

innovations, continued soil erosion may have led to the desertification of the Western Great 

Plains. Under this scenario, the adverse long term effects of the Dust Bowl assessed by Hornbeck 

(2012) would have been much worse. The agro-ecosystem of the Western Great Plains may have 

collapsed. In this case, the zone of instability identified in Figure 4 would move to the right. In 

the context of Figure 1, this would correspond to a move from scenario 3 (resilience) toward 

scenario 2 or even toward scenario 4 (collapse). The process of collapse would occur when 

adverse shocks put the system in the zone of instability with a tendency to move toward lower 

outcomes (e.g., scenario 4 in Figure 1). Figure 5 would also change. Under collapse, the lower 

tail of the yield distribution would become much thicker. And the probability function may 

exhibit multiple peaks in the lower tail, with a new peak possibly rising in the extreme lower tail 

(corresponding to collapse). In this case, a key issue would be whether “valleys” exist in-

between peaks in the probability density function. The presence of valleys would indicate that 

there are positive probabilities of escaping the lower tail of the distribution. Alternatively, the 
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absence of such valleys would mean any collapse obtained under adverse shocks would be 

irreversible.  

Of course, these hypothetical scenarios differ from the ones reported in Figure 4 and 5. 

Yet, our discussion has three important implications. First, evaluating resilience/collapse/traps 

must focus on the nature of dynamics under adverse shocks. As noted above, just knowing what 

is happening “on average” is not sufficient. Second, the assessment of local instability is crucial. 

Our TQAR approach provides a great analytical framework to conduct this assessment. Third, in 

general, the dynamic response to adverse shocks depends on management and policy. Our 

discussion has pointed out the role of innovations. On the negative side, collapse/traps are more 

likely to arise in the absence of management and policy response to adverse shocks. On the 

positive side, induced innovations in management and policy can be a crucial part of designing a 

more resilient system. Our analysis indicates the important role played by the induced response 

of management and policy to adverse shocks.  

 

9. Conclusion 

This paper has studied the dynamic response to shocks, with an application an agro-

ecosystem productivity. It has proposed a threshold quantile autoregression (TQAR) model as a 

flexible representation of stochastic dynamics. It has focused on the identification of zones of 

local instability and their usefulness in the characterization of resilience and traps. The 

usefulness of the approach was illustrated in an application to the dynamics of wheat yield in 

Kansas. The analysis examined the effects of extreme shocks both in the short run and in the 

long run. It identified a zone of instability in the presence of successive adverse shocks. It also 
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finds evidence of resilience. We associate the resilience with induced innovations in 

management and policy in response to adverse shocks.  

Our approach is generic and can be applied to the analysis of dynamics in any economic 

system. Our empirical analysis focused on a particular agro-ecosystem. Our findings documented 

the role of local instability in response adverse shocks. Such findings are expected to vary across 

economic situations. This motivates a need to extend our analysis and its applications to other 

economic conditions.  
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Table 1: Estimates of Autoregressive Models 

Paramaters 

 

AR(1) AR(2) TAR(1) TAR(2) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.703*** 0.706*** 0.543*** 0.540** 

𝑦𝑡−1 0.236*** 0.219** 0.409** 0.463** 

𝑦𝑡−2  0.034  -0.039 

𝑑1,𝑡−1 ∗ 𝑦𝑡−1   0.098* 0.111* 

𝑑3,𝑡−1 ∗ 𝑦𝑡−1   -0.010 -0.018 

𝑑1,𝑡−2 ∗ 𝑦𝑡−2    -0.020 

𝑑3,𝑡−2 ∗ 𝑦𝑡−2    -0.011 

𝑡 -0.002 -0.003 -0.002 -0.002 

𝑡1 
 

.0023*** 0.024*** 0.017** 0.017** 

𝑅2 

 

0.857 0.856 0.859 0.860 

Note: Asterisks indicate the significance level: * for the 10 percent significance level; *** for the 

5 percent significance level; and *** for the 1 percent significance level.  

 

 

Table 2: Estimates of Threshold Quantile Autoregressive Model TQAR(1) for Selected Quantiles 

Parameters quantile 

r = 0.1 r = 0.3 r = 0.5 r = 0.7 r = 0.9 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 -0.003 0.481** 0.747*** 1.036*** 1.409*** 

𝑦𝑡−1 0.687*** 0.407 0.272 -0.036 -0.341 

𝑑1,𝑡−1 ∗ 𝑦𝑡−1 0.234*** 0.086 -0.015 -0.026 -0.007 

𝑑3,𝑡−1 ∗ 𝑦𝑡−1 -0.067 -0.057 -0.051 0.125 0.156 

𝑡 0.000 -0.003 -0.005** -0.005** -0.001 

𝑡1 
 

0.003 0.018** 0.027*** 0.035*** 0.040*** 

Note: Hypothesis testing is conducted using bootstrapping. Asterisks indicate the significance 

level: * for the 10 percent significance level; *** for the 5 percent significance level; and *** 

for the 1 percent significance level.  
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Figure 1: Dynamic Patterns for the dominant root |𝜆1| 
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Figure 2: Kansas Wheat Yield (ton per ha) 
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Figure 3: Simulated Yield Distribution  
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Figure 4: Root of the Dynamic Yield Equation   
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Figure 5: Simulated Probability Function of Wheat Yield in the Short Run (t = 2), Intermediate 

Run (t = 4) and Long Run (t = 200) 
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Appendix 

Table A1: Estimates of Quantile Autoregressive Model of Wheat Yield including Weather 

Shocks, Selected Quantiles 

 

 

Parameters 

quantile 

r = 0.1 r = 0.3 r = 0.5 r = 0.7 r = 0.9 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  0.44929  0.02457  0.11511 -0.09011 -0.06440 

𝑦𝑡−1  0.22780  0.23496  0.29597**  0.18766  0.19131** 

𝑟𝑎𝑖𝑛_𝑠 -0.00045 -0.00043  0.00055  0.00027  0.00025 

𝑟𝑎𝑖𝑛_𝑓  0.00094*  0.00071  0.00089  0.00119**  0.00074 

𝑡𝑒𝑚𝑝 -0.00081  0.00994  0.00584  0.01346  0.01549 

𝑟𝑎𝑖𝑛_𝑠 ∗ 𝑦𝑡−1  0.00057  0.00060 -0.00068 -0.00040 -0.00036 

𝑡𝑒𝑚𝑝 ∗ 𝑦𝑡−1 -0.00395 -0.01454 -0.01458 -0.02326*** -0.02495*** 

𝑡 -0.00076 -0.00108 -0.00356 -0.00520** -0.00093 

𝑡1  0.01823***  0.02043***  0.02751***  0.0356***5  0.03070*** 

Note: Hypothesis testing is conducted using bootstrapping. Asterisks indicate the significance 

level: * for the 10 percent significance level; *** for the 5 percent significance level; and *** 

for the 1 percent significance level.  
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Footnotes 

1 Note that assuming serial independence of 𝑒𝑡 is not restrictive since any serial correlation can 

be captured by the dynamic equation for 𝑧𝑡 in (1b).  

2 Other possible scenarios (not shown in Figure 1) are when there is a zone of stability 

surrounded by zones of instability, or when instability is global (e.g., under chaos).  

3 Rainfall is measured in millimeters and temperature in degree Celsius. 

4 Note that Chavas and Di Falco (2016) obtained a similar result for English wheat.  

                                                          


