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Abstract

Raising smallholder agricultural productivity has the potential to boost GDP and to reduce rural

poverty, but the evidence on how to best achieve productivity gains remains mixed. Technologies

exist that can increase smallholder yields and profits, but researchers and practitioners grapple

with how to induce technology adoption in this population. This task is particularly challenging

and pressing in sub-Saharan Africa, where agricultural yields lag all other regions and where

poverty is often concentrated in rural areas. This paper presents randomized evidence of a rare

scaled-up success story. Analyzing data from a pre-registered randomized control trial, we show

that participation in One Acre Fund’s (1AF) small farmer program causes statistically and

economically significant increases in yields and profits. The program is designed around the notion

that farmers face multiple constraints simultaneously, so that relaxing a single constraint may be

insufficient. Participating farmers receive flexible financing for the purchase of high-quality seeds

and fertilizer, crop insurance, and information about improved farming practices. To better

understand the mechanisms through which the program works, we examine a sample of farmers

who participated in the program in previous years and who use many of the recommended

practices but fail to achieve yield gains similar to current participants. This suggests that

relaxing information constraints alone may not be sufficient and additional results imply that

the program’s credit component may be crucially important. We further explore potential

impact heterogeneity using simple binary interactions and new machine learning techniques

allowing for a flexible functional form. Here, we observe that small farmers—who tend to be

more credit-constrained—benefit more from the program. Our work has implications for poverty

traps theory, as well as for the optimal design of social policy.
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1 Introduction

Raising smallholder productivity remains a key development challenge, and it has proven partic-

ularly intractable in sub-Saharan Africa. In 2014, US agricultural productivity exceeded African

productivity by 473% (Magruder, 2018), and rural poverty remains much higher than urban levels

(Beegle et al., 2016). The potential economic gains are significant: Gollin et al. (2018) estimate that

a 10 percentage point increase in adoption of high-yielding crop varieties is associated with a 10-15

percentage point increase in GDP per capita. Furthermore, GDP growth originating in agriculture

benefits the poor substantially more than growth originating in other sectors (Ligon and Sadoulet,

2008).

Agricultural policy experiments such as extension programs, fertilizer subsidies, and information

interventions—tested by governments, NGOs, and researchers alike—have yielded substantial

evidence on what fails and a limited catalogue of successes. Is this limited progress a sign that

African agriculture is a lost cause or do existing programs lack something crucial? This paper uses a

pre-registered, randomized control trial to examine the One Acre Fund (1AF) small farmer program,

which succeeds in boosting smallholder productivity. By providing farmers with training, in-kind

credit, insurance, and access to high-quality inputs, the program increases per-acre farmer yields by

16% and profits by 21% in our preferred specification.

The 1AF program’s focus on credit, insurance, inputs, and information is no accident. The

economics literature has accumulated substantial evidence that failures in any these domains hinder

farmers’ ability or willingness to adopt improved agricultural technologies. Feder et al. (1985)

emphasize three of these constraints in their review of the technology adoption literature at the time

(credit, risk, and information). Magruder (2018) focuses on the same three constraints as key barriers

to adoption in a more recent review of the experimental evidence on technology adoption. The

focus on providing high-quality inputs also has empirical support: a growing literature establishes

that fertilizer available on local markets in the region often falls short of quality standards (Bold

et al., 2017; Fairbairn et al., 2017; Tjernström et al., 2018).

Input loan interventions on their own have seen relatively low levels of takeup, and have had

limited impacts on crop choices and productivity (Giné and Yang, 2009). Ashraf et al. (2009)

examine a program that combines credit with increased access to export markets and find that

2



bundling the two increased program takeup but failed to increase farmer incomes relative to farmers

who were only offered the export program. Despite facing clear liquidity constraints, few farmers

took up a voucher program for fertilizer and improved seeds in Mozambique (Carter et al., 2013).

However, the farmers who did experiment with fertilizer in response to the vouchers continued to

use the technology even after subsidies expired, suggesting a role for learning about optimal fertilizer

use (Carter et al., 2014).

Theory clearly suggests that uninsured risk reduces input use, which in turn implies that crop

insurance should increase input use. Empirical tests of this hypothesis show that when farmers

receive insurance, they indeed increase their input use and shift towards higher-yielding but riskier

crop varieties (Karlan et al., 2011; Mobarak and Rosenzweig, 2012; Elabed and Carter, 2014). Some

studies suggest that insurance may be a more important driver of agricultural investment than credit

(Karlan et al., 2014). Despite the promise that insurance holds, a large number of index insurance

trials in a wide variety of contexts have been faced with very low take-up. We are unable to directly

investigate the importance of the insurance component of 1AF’s program, but will keep in mind the

fact that farmers have access to crop and funeral insurance in our discussion of mechanisms below.

In terms of information, farmers face a stochastic environment that makes it difficult to infer

what optimal practices and technologies are. Even beyond the information needed to make adoption

decisions about new technologies, farmers may persist in using sub-optimal agricultural practices

because the noisiness of agricultural yields hampers their ability to learn. Providing detailed

information about specific ways to improve yields has been found to be effective at shifting farmer

practices (Hanna et al., 2014). However, even if farmers do adopt improved practices, studies

have found that they sometimes make small mistakes that render adoption unprofitable (Duflo

et al., 2008). Furthermore, farmers tend to learn and extrapolate from both their own experiences

(Maertens et al., 2017) and those of their neighbors (Conley and Udry, 2010). This can help diffuse

information through networks, but it may also perpetuate flawed information, especially when

outcomes are highly stochastic and dependent on unobserved factors.

Beyond knowing that the program works, we would also like to disentangle the mechanisms

through which it works and to better understand the extent to which its bundled nature contributes

to its success. A growing body of evidence shows that bundled interventions can be effective at

moving people out of poverty (Bandiera et al., 2017; Banerjee et al., 2015). If we believe that
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farmers face multiple simultaneous constraints, offering an intervention that only relaxes credit

or only provides information may not be sufficient to raise yields and profits in a significant or

economically meaningful way.

To make progress towards the goal of understanding mechanisms, we therefore perform a number

of additional analyses: first, we examine a sample of farmers with prior (non-randomized) access to

the program. These farmers continue to use of many of the improved agricultural practices that the

program teaches, but these practices do not translate into statistically significant yield gains. We

interpret this as suggestive evidence that relaxing information constraints may not be sufficient on

its own. Second, heterogeneity analysis using both binary interactions and new machine learning

techniques reveals that small farmers—who tend to be more credit-constrained—benefit more from

the program. Third, a comparison of farmers’ fertilizer use on program plots and non-enrolled plots

corroborates the notion that the program’s credit component may be central to its success. While

the RCT that we study did not randomly vary the components (as in Banerjee et al. (2015)), we

believe this analysis sheds additional light on the program mechanisms.

The rest of the paper is organized as follows. Section 2 describes the context of our study,

the experimental design, and the different samples that we employ in our analysis. This section

also familiarizes the reader with our sample by presenting summary statistics and balance checks.

Section 3 describes our empirical analysis—both the pre-registered RCT analysis and the more

exploratory investigations of mechanisms. Section 4 presents our primary empirical analysis of the

effects of program participation on maize yields and profits, and discusses the improved practices

that treated farmers adopt. Section 5 then investigates why pre-exposed farmers do not seem to

be able to obtain the higher yields that we see among treated farmers, despite using many of the

improved practices. We build on this examination to analyze whether information and credit seem

to be binding constraints. Section 6 conducts a host of robustness checks of our main results, and

Section 7 concludes.

2 Context and data

This study focuses on Kenya, where forty percent of the population lives in poverty, and a large

share of the poor engage in smallholder farming as their primary occupation. The agriculture sector
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contributes 51 percent to the country’s GDP (25% indirectly) and is dominated by small-scale

producers (Government of Kenya, 2010). Despite the importance of the agricultural sector to the

economy, most smallholder farmers are not running successful micro-enterprises. Households in

Kenya typically derive their income from the production of a variety of crops, often combined with

a range of off-farm activities (Sheahan et al., 2013). Most smallholder farmers produce less food

than they need to feed their families, and are net maize buyers (Kirimi et al., 2011).

We further focus on maize—the main staple crop in Kenya—as the crop is crucial both to the

economy and from a food security perspective. Seventy percent of Kenya’s maize is produced by

smallholders who farm between 0.2 and 3 hectares (Government of Kenya, 2010, pg. 11-12). While

Kenyan farmers use improved improved maize varieties and inorganic fertilizer at higher rates than

other countries in the region, maize yields remain low. Increasing yields and profits is crucial if we

want the agricultural sector to act not simply as a means of subsistence, but as a pathway out of

poverty.

1AF has operated in western Kenya for more than ten years, and served over 200,000 farmers

in 2016. Their core “market bundle” addresses several of the key constraints discussed in Section

1: participating farmers receive group-liability loans for improved seeds and high-quality fertilizer,

weekly training on modern agricultural techniques, crop and funeral index-based insurance, and

market facilitation support to help them sell their products for higher prices.

Farmers choose the amount of land to enroll, and 1AF provides the agricultural inputs as a

function of the amount of land enrolled. The group liability loans are given to self-selected farmer

groups. The loan terms are quite flexible, allowing farmers to repay in any amount at any time

during the growing season (but they must complete repayment in full by the end of the harvest).

Historically, repayment rates have been over ninety-seven percent. Field officers conduct the weekly

trainings with farmer groups; a field officer interacts on average with around 200 farmers.

2.1 Experimental design

The experiment was carried out in a cluster-randomized design in the Teso region of Kenya. As

described above, farmers self-select into farmer groups of around 10-12 farmers. A cluster is then

made up of 2-4 of these joint-liability farmer groups. Participants were recruited following standard

1AF protocol. Typically, once a farmer indicates interest in signing up and satisfies the basic criteria,
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he/she pays a small program participation deposit of approximately $5 USD.1 For the purposes of

the study, farmers also had to consent to take part. Shortly after contract signing, 1AF informed

farmers about the study, that their participation would be voluntary, and further provided them

with informed consent documents. 1AF informed farmers that half of them would be randomly

assigned to treatment, while the other half would receive an alternative compensation package

(household goods and a discount for 1AF participation the following season amounting to roughly

20% of the typical program cost). Randomization was conducted by public lottery, and all farmers

enrolled in the study also received 10,000 Ksh in funeral insurance coverage, regardless of treatment

status.2

The study is complicated by the fact that it took place in a region where 1AF has already

operated for several years. The specific villages selected for study inclusion had never been offered

the 1AF program, but neighboring villages had previously been offered the program. Thus, a

substantial portion of farmers who expressed interest in participating had previously participated in

the 1AF program (by “commuting” to the neighboring villages to participate). 1AF typically targets

smallholder farmers living in areas with 100-500 people per km2, who rely mostly on agricultural

income, but have limited access to farm inputs. Therefore, when 1AF decided to conduct an RCT

to evaluate their work in Kenya, choosing completely new regions would have forced them to expand

into regions that are quite unrepresentative of the typical program. For example, they would have

had to enroll farmers in pre-dominantly tea-growing areas, or located in substantially different

agro-ecological zones. Teso district in particular was chosen as a suitable region, being representative

of 1AF program areas, while still having many farmers in the district who had not been previously

exposed to 1AF.

Because of the “contamination” of some of the sample, we define two different samples for

the analysis: the “primary sample,” which consists of treated and control farmers who had never

previously participated, and the “full sample,” which includes the pre-exposed farmers. In some of

our analyses, we also separately consider only the pre-exposed sample. Tables and graphs clearly

note which sample we are using. It is worth keeping in mind that both of the samples present some

1To join 1AF, a farmer must satisfy the following restrictions: have a phone number and national identification;
agree to repay their loan; and complete pre-payment of 500 Kenyan Shillings (Ksh, equivalent to approximately $5
USD).

2For the study, farmers also had to fulfill two additional requirements: they had to cultivate maize, and they had
to be able to cultivate at least a quarter of an acre of maize.
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challenges and some advantages. On the one hand, if the pre-exposed control farmers continue

to benefit from their prior program involvement even after quitting the program (by, for example,

continuing to use the new practices that they’ve learned), then treatment effects estimated with

the full sample would likely result in a downward-biased impact estimate. On the other hand,

we can examine the pre-exposed control farmers to see whether they achieve similar yields to the

newly-enrolled treated, and we can compare pre-exposed farmers in the treatment group to see

whether effects accumulate with multiple years of treatment.

Furthermore, the farmers who had never been exposed may be different than those who self-

selected into the program in earlier years. If selection into the program is positively correlated with

potential returns to the program (i.e., higher-return farmers opt in earlier), we would expect the

impacts on “hold-out” farmers to be a lower bound of the true impacts; if timing of enrolment is

uncorrelated with returns to program participation, then we will obtain unbiased estimates of the

program.

2.2 Data collection

The data collection for this experiment was directly managed by 1AF. To increase confidence in the

process, they contracted with the International Initiative for Impact Evaluation (3ie) to help design

and review all parts of the trial—including the experimental design, the field protocols, sampling

and randomization, as well as the data collection instruments (Dubey and Yegbemey, 2017). 3ie

concluded that the randomization was conducted successfully, and noted that 1AF staff showed

high level of professionalism in conducting the randomization.3

Readers may also worry about the potential for enumerator effects since 1AF collected the data

from farmers. This arrangement was agreed upon for practical purposes as 1AF has dedicated and

trained staff on the ground to collect the large amounts of household and physical harvest data that

were required for this study. Several factors should help inspire confidence in the data collection: first,

1AF used standard best-practice protocols to ensure data quality, such as back-checks (resurveying

10% of respondents and comparing with original results) and in-field supervision. Second, 1AF

contracted an independent survey firm, Intermedia Development Consultants (iDC), to carry out

3A letter from 3ie attesting to their review and approval of the pre-analysis plan can be found in Appendix X.
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a three-step audit of the data collection4. The audit team participated in group meetings held

by the 1AF monitoring team, spent 26 days in the field, during which they observed the work of

enumerators on 76 occasions and enumerators’ interactions with farmers on 246 occasions. They

observed the work of supervisors on 11 occasions and that of supervisors as back-checkers on

five occasions.(Intermedia Development Consultants, 2017) They further carried out parallel data

collection efforts to the 1AF data collection, comparing the results and finding minimal discrepancies.

Two of the authors on this paper were brought in to review the pre-analysis plan (PAP) prior to

follow-up data collection and to conduct the final analysis according to the PAP. The team carried

out all the variable construction and analysis from scratch, i.e. without referring to 1AF’s existing

analytical code.5 This paper extends the basic impact evaluation analysis from the report in order

to investigate impact mechanisms; Table Y in Appendix Z clearly delineates which analyses were

pre-registered and which fall outside of the purview of the PAP.

Baseline data collection occurred in November and December of 2016—after program enrollment

but before treatment assignment. The public lottery, which assigned clusters of farmer groups

to treatment, took place in January 2017. Enumerator teams rolled out input use surveys after

the planting of the main season in 2017, from April through June. These data provide detailed

information on the extent of farmer compliance with treatment, such as whether farmers spaced

their plants correctly, and applied the correct fertilizer dosage. We use these data as indicators of

the extent to which farmers are actually learning and changing their behaviors as a result of the

1AF training.

The main outcome variables come from a harvest data collection effort that 1AF carried out

during the main maize and beans harvest period (May to October, 2017). The procedure for

collecting yield data is the following: for treatment farmers, enumerators randomly selected one

maize plot that was enrolled in the program (“enrolled plot”) and one maize plot that was not

enrolled (“non-enrolled plot”). For control farmers, enumerators randomly selected a random maize

plot. Enumerators then collected wet and dry harvest weights from two randomly placed 8 x

4The iDC audit report is available from the authors upon request; the overall conclusion of the audit stated that
“With respect to the Teso trial, the strategy and planning are appropriate to the situation, and they have attempted to
make every effort to obtain accurate, reliable and valid results. ... Overall, the data collection is well planned and
executed. The possibilities for improving performance are quite limited. The survey team members are well selected
and committed to the process. The recording and transmission of data is well done, with minimal errors.”

5The final report can be found here: Deutschmann and Tjernström (2018) [link to report]
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10 boxes for each selected plot. These estimates are applied to all cultivated land to determine

per-farmer yields (for treatment farmers, we compute a weighted average of 1AF and non-1AF

cultivated land size). We expect this method to produce substantially better yield estimates than

the self-reports commonly reported by economics studies. Furthermore, we measure land size based

on GPS readings of each field (we can also compare this to self-reported land size; more on this in

Section 6).

2.3 Summary statistics

Table 1 shows baseline means of key control variables in the full sample, as well as balance tests

across treatment and control samples. The majority of the sample is married, and less than half of

male household heads have completed secondary school. The majority of households (just under

80%) earned more than 50% of their income from farming in the last year, corroborating that

farming is a key activity in this population. The average farmer plants one acre of maize and gets

roughly half a ton (500 kgs) of maize per acre.

Many households use some type of agricultural technology at baseline (roughly 77%), but this

basic variable does not capture anything about the intensity of agricultural technology use. Figures

1 and 2 show the baseline fertilizer intensity of two key inorganic fertilizers, DAP (diammonium

phosphate) and CAN (calcium ammonium nitrate). These two graphs clearly show that while

many farmers used some fertilizer at baseline (see the lines representing “new participants” in both

treatment and control), they applied them at very low rates. We can also see that pre-exposed

farmers tend to use more fertilizer than new participants, suggesting that they learned something

from 1AF participation and/or that earlier enrollees are better farmers to start with.

2.3.1 Full sample, baseline balance

Only two variables are statistically different across the two groups: previous knowledge of 1AF

practices, and self-reported per-acre yields. Although the differences in the other covariates are not

themselves statistically distinguishable from zero, the F-test of joint orthogonality is significant at

the 5%. We include all of the variables in this table as controls for all regressions (as per the PAP),

unless otherwise noted.
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(1) (2) T-test
Control Treatment Difference

Variable N Mean/SE N Mean/SE (1)-(2)

Married 1190 0.879
(0.009)

1237 0.873
(0.009)

0.006

Father, 2ary school (0/1) 1199 0.395
(0.014)

1230 0.426
(0.014)

-0.031

Farm labor >50% income 1190 0.772
(0.012)

1237 0.758
(0.012)

0.014

Used ag tech 2016 1199 0.762
(0.012)

1257 0.778
(0.012)

-0.016

Prev. 1AF knowledge 1190 0.456
(0.014)

1237 0.517
(0.014)

-0.060***

Intercropped 2016 1190 0.477
(0.014)

1237 0.468
(0.014)

0.009

Credit access 2016 1190 0.709
(0.013)

1237 0.728
(0.013)

-0.019

Maize acres, 2016 1190 1.007
(0.024)

1237 1.006
(0.022)

0.001

Household size 1190 6.648
(0.073)

1236 6.780
(0.075)

-0.132

Maize yield/acre, 2016 1180 530.242
(12.463)

1213 580.555
(13.403)

-50.312***

F-test of joint significance (F-stat) 1.985**
F-test, number of observations 2345

Notes: The value displayed for t-tests are the differences in the means across the groups. The
value displayed for F-tests are the F-statistics. Fixed effects using variable siteid are included in all
estimation regressions. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level.

Table 1: Baseline balance of treatment and control samples
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Figure 2: Fertilizer use at baseline (CAN)
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2.3.2 Pre-exposed vs. new participants

Table 2 compares the farmers across the pre-exposed and new participant samples. As Figures 1

and 2 already hinted at, the two samples differ substantially. Pre-exposed farmers are more likely

to have an educated father in the household, more likely to earn at least 50% of household income

from farm labor, more likely to report using improved seeds or fertilizer at baseline, more likely to

report baseline knowledge of 1AF practices, less likely at baseline to intercrop beans with maize,

more likely to report having access to credit, reported using more land for maize at baseline, have

bigger households, and reported higher maize yields per acre at baseline.

Several of these differences (education, land endowments, yields, etc.) suggest that farmers

who enrolled earlier may be better farmers—although several of these variables were likely directly

affected by program participation. Because of this, in most cases we prefer to present results using

the primary sample, despite the loss in power afforded by the smaller sample size. However, our

results are robust to using either sample definition.

3 Empirical strategy

This section discusses our analytical approach, both for the primary analysis (as pre-specified in the

PAP) and for the additional analyses that try to dig into impact heterogeneity and mechanisms.

3.1 Pre-registered main analysis

The main analysis focuses on three outcomes of interest: per-acre maize yields, per-farmer maize

yields, and profit (in USD). Maize yields use dry weight measurements from randomly-selected

areas on farmers’ plots. For treated farmers, the yield outcomes are a weighted averages of yields

on enrolled and non-enrolled land. Profits account for program costs, input costs, labor costs, and

average local market prices over the off-season. Revenues for profit calculations account for both

maize and any inter-cropped bean yields, since around half of the sample farmers intercrop (it is

difficult to separate labor or fertilizer costs across crops within the same plot). See Appendix A for

a more detailed explanation of how the outcome variables are constructed.
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(1) (2) T-test
Primary Sample Pre-Exposed Sample Difference

Variable N Mean/SE N Mean/SE (1)-(2)

Married 874 0.886
(0.011)

1553 0.871
(0.009)

0.015

Father, 2ary school (0/1) 896 0.363
(0.016)

1533 0.439
(0.013)

-0.076***

Farm labor >50% income 874 0.757
(0.015)

1553 0.769
(0.011)

-0.012**

Used ag tech 2016 920 0.591
(0.016)

1539 0.876
(0.008)

-0.285***

Prev. 1AF knowledge 874 0.097
(0.010)

1553 0.706
(0.012)

-0.609***

Intercropped 2016 874 0.509
(0.017)

1553 0.452
(0.013)

0.057***

Credit access 2016 874 0.706
(0.015)

1553 0.726
(0.011)

-0.020***

Maize acres, 2016 874 0.955
(0.027)

1553 1.035
(0.021)

-0.081***

Household size 874 6.597
(0.087)

1552 6.782
(0.066)

-0.184***

Maize yield/acre, 2016 860 433.120
(13.794)

1533 624.538
(11.690)

-191.418***

F-test of joint significance (F-stat) 117.626***
F-test, number of observations 2345

Notes: The value displayed for t-tests are the differences in the means across the groups. The
value displayed for F-tests are the F-statistics. Fixed effects using variable siteid are included in all
estimation regressions. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level.

Table 2: Balance across primary and pre-exposed samples
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For each outcome, we estimate the following regression:

Yis = α+ βTis + δXis + γs + εis (1)

where Tis is the treatment dummy for individual i in field officer area s, Xis includes the list of

pre-specified controls, γs is a field office area fixed effect, and εis is clustered at the cluster (treatment

assignment) level.

To ensure correct inference given our multiple hypotheses, we follow Jones et al. (2018) and

implement Westfall and Young (1993) free step-down re-sampling to control for family-wise error

rate. We treat each regression table as a family of hypotheses. We present adjusted p-values based on

this method at the bottom of each table in Section 4. The method does not change the significance

level of any of the treatment coefficients.

3.2 Heterogeneity analysis

For the first part of the heterogeneity analysis, we estimate a regression in which we interact the

treatment dummy with binary indicators of various baseline characteristics, as in the following:

Yis = α+ β1Tis + β2Kis + β3(Tis ×Kis) + δXis + γs + εis (2)

where Kis is the key variable of interest for heterogeneity analysis (for individual i in field officer

area s). Most of our analysis will show the point estimate and 95-percent confidence interval of the

average marginal effect of treatment for farmers with farmers with Kis = 1 and Kis = 0.

For a second set of heterogeneity results, we employ a Generalized Random Forest (GRF)

methodology. GRF is a non-parametric machine learning algorithm that can help identify which

(if any) baseline characteristics are associated with greater program impacts. Broadly speaking, a

random forest is a collection of classification trees that are built using data and a statistical learning

algorithm. Each classification tree is created by randomly drawing a subset of observations, called

the training sample. The training sample is then drawn without replacement from the full sample,

and forms the basis for a tree. The training sample is recursively split into subgroups along values of

some covariates. We can then predict an individuals outcome, yi, using the mean y of observations
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that share similar covariates. In turn, the average of these predictions across many trees is an

estimate of the conditional mean of y. The algorithm determines which splits that are implemented

based on those that minimize some in-sample goodness-of-fit criterion.

The Generalized Random Forest (GRF) method developed by Athey, Tibshirani and Wager

(2018) improves upon random forest methods by proving that forest estimators are consistent and

have an asymptotic normal distribution with a variance that can be estimated. In the context of

heterogeneous treatment effects, the GRF algorithm can be used to build a causal random forest

(CRF) to estimate a conditional average treatment effect. We report graphical results representing

the predictions of treatment effects as we vary certain baseline variables, holding all other covariates

at the sample median.

Future work in progress includes analysis following the recently developed machine learning

methods in Chernozhukov et al. (2018).

4 Program impact

This section presents our main results on program impact, in which we evaluate the impact of the

1AF market bundle on yields and profits. Table 3 shows result using our preferred specification and

the smaller (not pre-exposed) sample. Column (1) shows the impact of the treatment on per-acre

maize yields, column (2) shows effects on per-farmer yields, and column (3) shows impacts on profits.

These correspond to a 16% increase in per-acre yields, a 32% increase in per-farmer yields, and a

20% increase in profits.

The magnitude of the profit results is particularly remarkable since even programs that affect

yields often fail to increase profits. Further, treatment farmers spent a mean of $112 USD (median

$98) on inputs, labor, and program participation costs, compared to a mean of $76 (median $63) for

control farmers. Using this primary sample estimate of the treatment effect on profits, this suggests

a 65% return on average for farmers who participated. Similarly, if we compare the estimated

coefficient with self-reported income at baseline (mean $751, median $481), this increase in profit is

far from trivial.

While we report our preferred specification here (including covariates, site fixed effects, and using

the primary sample), we additionally conduct a number robustness checks in Section 6, hopefully
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convincing even skeptical readers that our results do not hinge upon these model assumptions. We

demonstrate that these results are robust to different sample definitions and to the exclusion of

the covariates and of site fixed effects. Also reported in Section 6) are results using randomization

inference, inspired by Young (2017).

We also examine whether the treatment affected farmers’ practices. Table 4 shows results

examining the effect of 1AF participation on various improved farming practices. Column (1)

reports the effect on the number of acres planted in maize. The results suggest that the program

is not substantially affecting how much land farmers are devoting to maize, confirming that the

per-farmer yield impacts from Table 3 are not coming simply from an increase in planting area.

Columns (2) and (3) look at the treatment impact on farmer likelihood of using a commercial seed

and the intensity of improved seed use. The program affects neither of these practices, despite

commercial seed being one of the main components of the 1AF bundle. This could be due to high

baseline use of commercial seed among both treatment and control farmers. Column (4) shows

treatment impacts on the likelihood of intercropping with beans, a practice that 1AF recommends.

The lack of impact here could be due to the large share of farmers who were already adopting that

practice at baseline.

Columns (5) - (8) examine fertilizer use. DAP (diammonium phosphate) is a fertilizer that

should be applied at the time of planting. It is the fertilizer type that farmers are most likely to

be familiar with. However, anecdotally some farmers incorrectly apply it also later in the season,

which tends to be ineffective. CAN (calcium ammonium nitrate) on the other hand is less commonly

used in this area. It should not be applied at planting, but should instead be applied when the

maize plant is about knee-high. Here, we do not examine application rates, but rather the timing of

fertilizer application. In columns (5) and (6), we can see that the treatment increases the likelihood

that a farmer applies DAP fertilizer at planting, but has no effect on the at-planting application of

CAN. This is encouraging, as it seems farmers are applying the fertilizer at the recommended time.

The post-planting behavior in columns (7) and (8) also suggest that treated farmers are more likely

to apply CAN and to do so in the recommended manner (post-planting). We will examine fertilizer

rates when we turn to mechanisms in Section 5.

We can also examine several other recommended practices, including whether the farmer prepared

her field with a plow, and whether the spacing of plants and rows within the field are according
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Table 3: Primary outcomes, primary sample

(1) (2) (3)
Maize PA Maize Per Farmer Profit

1AF participant 181.673∗∗∗ 345.074∗∗∗ 72.677∗∗

(35.821) (84.088) (30.418)

Married 106.281∗ -41.144 -23.607
(59.095) (152.252) (56.302)

Father, 2ary school (0/1) -4.903 249.461∗∗∗ 88.690∗∗

(45.756) (94.245) (35.212)

Farm labor >50% income 8.930 -10.724 -1.115
(49.994) (84.821) (31.249)

Used ag tech 2016 -69.550 -100.434 -44.421
(43.968) (86.068) (31.066)

Prev. 1AF knowledge 14.105 114.447 33.869
(62.882) (166.821) (62.305)

Intercropped 2016 -5.946 -138.885 -48.496
(45.297) (94.922) (34.708)

Credit access 2016 -79.429∗∗ -65.529 -26.848
(38.925) (84.676) (30.536)

Maize acres, 2016 57.257∗∗ 413.300∗∗∗ 132.809∗∗∗

(27.106) (79.716) (28.756)

Household size 3.421 35.935∗∗ 13.455∗∗

(7.267) (17.200) (6.036)

Maize yield/acre, 2016 0.177∗∗∗ 0.461∗∗∗ 0.155∗∗∗

(0.051) (0.108) (0.040)

FAW Incidence -6.352∗ -1.091 0.470
(3.708) (8.499) (3.144)

Observations 701 637 637
R2 0.136 0.282 0.241
MHT p-value for 1AF 0.000 0.000 0.019
Control Mean Dep. Var 1124.733 1081.431 353.263

Standard errors in parentheses

Note: standard errors clustered at cluster level. All regressions include field office
area fixed effects. MHT p-value uses Jones et al. (2018) implementation of Westfall
and Young (1993) correction for multiple hypothesis testing.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 4: Study year (2017) practices, primary sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Maize Acres Use Comm. Seed Kg Comm. Seed Int. Beans CAN AP DAP AP CAN PP DAP PP Used Plow Row Spacing Plant Spacing

1AF participant=1 0.041 -0.003 0.028 0.018 -0.005 0.539∗∗∗ 0.280∗∗∗ -0.146∗∗∗ 0.051 0.312∗∗∗ 0.262∗∗∗

(0.053) (0.026) (0.321) (0.029) (0.010) (0.032) (0.028) (0.023) (0.034) (0.040) (0.031)

Married -0.063 0.044 0.001 0.030 0.001 -0.010 0.023 -0.002 -0.002 0.080 0.106∗∗∗

(0.078) (0.049) (0.366) (0.046) (0.016) (0.038) (0.049) (0.038) (0.042) (0.049) (0.038)

Household size 0.048∗∗∗ 0.007 0.019 -0.000 -0.002 0.007 -0.005 -0.003 0.001 -0.012∗ 0.002
(0.010) (0.005) (0.085) (0.006) (0.002) (0.006) (0.006) (0.005) (0.006) (0.007) (0.006)

Father, 2ary school 0.232∗∗∗ 0.062∗ 0.161 -0.011 0.015 -0.004 0.079∗∗∗ -0.047 0.055∗∗ 0.050 -0.058∗∗

(0/1) (0.046) (0.033) (0.409) (0.026) (0.010) (0.023) (0.030) (0.031) (0.026) (0.037) (0.027)

Farm labor >50% 0.067 0.065∗ 0.635∗ 0.046 -0.009 -0.010 0.048 0.035 -0.006 -0.045 -0.017
income (0.053) (0.038) (0.354) (0.034) (0.013) (0.031) (0.031) (0.027) (0.040) (0.049) (0.031)

Maize acres, 2017 0.037∗ 2.465∗∗∗ 0.035 0.001 -0.028 0.000 0.064∗∗∗ 0.081∗∗∗ 0.014 -0.021
(0.021) (0.379) (0.023) (0.007) (0.021) (0.021) (0.021) (0.025) (0.030) (0.018)

Observations 841 841 835 835 827 827 833 833 827 841 841
R2 0.157 0.044 0.159 0.320 0.023 0.394 0.167 0.219 0.268 0.128 0.174
Ctrl Mean Dep. Var 0.921 0.761 5.285 0.402 0.020 0.409 0.623 0.244 0.738 0.349 0.091

Standard errors in parentheses

Note: standard errors clustered at cluster level. All results are from OLS regressions which include field office area fixed effects. AP stands for at planting, and PP stands for post planting. 1AF recommends using
DAP at planting and CAN post planting. Row spacing and plant spacing are 1 if average spacing within 5 cm of recommended.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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to the recommended agronomic practices. Here, we define farmers as doing it correctly if their

average row- and plant-spacing practices are within 5cm of the recommended method. We can

see that the treatment substantially increases the likelihood of both correct row spacing and plant

spacing. Since plant density tends to deviate from agronomic best-practice in most of sub-Saharan

African smallholder agriculture, this improvement could have important implications for yields.

Plant spacing is also a practice that should be less costly than some of the other recommended

practices like applying purchased inputs like fertilizer and commercial seeds.

We additionally look at the question of improved practices as an index. We consider four key

recommendations: use DAP at planting, use CAN after planting, correct row-spacing (within 5

cm of the recommended 75 cm apart), and correct plant-spacing (each plant within a row should

be approximately 25 cm from the next). Here we can look at difference between treatment and

control groups in terms of the number of practices that they adopt. Figure 3 shows, within the

primary sample, that treated farmers indeed adopt more of the recommended practices than do

control farmers, although control farmers did already tend to adopt some of the same practices.
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Figure 3: Improved practice adoption by treatment status

We have thus established that the treatment affects the agricultural practices of treated farmers,

and that the program significantly increases yields and profits. From a policy and implementation

perspective, it seems logical to wonder to what extent the training and subsequent improvements
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in improved practices drives yield and profit impacts. Since fertilizer and seed are costly and

risky investments, adoption of low-cost improved practices may be easier to diffuse than other

technologies—if indeed they drive the results.

5 Unpacking program mechanisms

We are interested in understanding how the various program components drive the results presented

above. The 1AF program includes four different components: input credit, insurance, access to

high-quality inputs, and training in improved agricultural practices. While none of the components

were individually randomized, we will attempt to investigate the relative importance of these factors.

5.1 Information

A key component of the 1AF bundle is the training that farmers receive on optimal planting practices.

As we saw in Section 4, the program does increase farmers’ adherence with recommended agronomic

practices, suggesting that there may have been some information gaps at the baseline. If farmers

continue to apply these improved practices after they are not longer participants in the program, it

suggests that they learned from the program that these practices are beneficial.

Table 5 shows suggestive evidence that pre-exposed farmers tend to use improved practices.

The table only includes control farmers, and our coefficient of interest is that on the dummy for

pre-exposure. Of course, since pre-exposure to 1AF’s programming is non-random, it is entirely

possible that farmers who selected into the program earlier were different than those who delayed

enrollment. If early-adopters were better farmers, they may have been using some of the improved

practices even in the absence of the program. In particular, the coefficient on past participant in

column (2), which shows that pre-exposed farmers are more likely to plant a commercial seed than

are non-pre-exposed farmers suggests that selection is likely a part of the story here.

With that in mind, we can note that the pre-exposed farmers plant more maize (column 1), are

more likely to use DAP at planting (column 6), and correctly less likely to use DAP post-planting

(column 7). They are also more prone to using a plow and to correctly space the rows of their maize

(columns 9 and 10). While we cannot guarantee that the self-selected farmers did not already use

these practices before enrolling, the fact that the adoption lines up quite well with the (randomized)
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Table 5: Study year (2017) practices, control sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Maize Acres Use Comm. Seed Kg Comm. Seed Int. Beans CAN AP DAP AP CAN PP DAP PP Used Plow Row Spacing Plant Spacing

Past 1AF participant 0.072∗ 0.112∗∗∗ 0.171 -0.028 -0.010 0.071∗∗ 0.056 -0.052∗∗ 0.072∗∗ 0.079∗∗ 0.016
(0.040) (0.022) (0.433) (0.024) (0.009) (0.035) (0.034) (0.026) (0.030) (0.035) (0.022)

Married 0.039 0.067∗∗ 0.440 0.012 -0.018 -0.048 0.026 0.010 -0.040 0.046 0.059∗

(0.081) (0.033) (0.380) (0.040) (0.014) (0.041) (0.043) (0.038) (0.031) (0.039) (0.031)

Household size 0.046∗∗∗ 0.003 0.146∗ 0.004 -0.001 0.005 -0.005 -0.006 0.010∗∗ -0.008 0.003
(0.009) (0.004) (0.076) (0.005) (0.001) (0.006) (0.006) (0.005) (0.004) (0.007) (0.004)

Father, 2ary school 0.253∗∗∗ 0.007 0.073 -0.010 0.010 0.028 0.047∗ -0.031 0.034∗ 0.038 0.015
(0/1) (0.039) (0.022) (0.374) (0.025) (0.007) (0.029) (0.026) (0.024) (0.019) (0.039) (0.020)

Farm labor >50% 0.103∗∗ 0.068∗∗ 0.743∗ 0.126∗∗∗ -0.006 0.026 0.032 -0.004 -0.031 -0.024 0.022
income (0.047) (0.027) (0.414) (0.028) (0.008) (0.036) (0.031) (0.026) (0.031) (0.036) (0.020)

Maize acres, 2017 0.026 2.966∗∗∗ 0.058∗∗∗ -0.004 0.019 0.033 0.038∗∗ 0.082∗∗∗ 0.008 -0.009
(0.017) (0.378) (0.016) (0.004) (0.024) (0.022) (0.017) (0.019) (0.026) (0.010)

Observations 1151 1151 1143 1143 1117 1117 1145 1145 1117 1151 1151
R2 0.126 0.066 0.190 0.247 0.021 0.130 0.097 0.170 0.270 0.031 0.081
Ctrl Mean Dep. Var 0.955 0.856 5.412 0.471 0.014 0.493 0.689 0.240 0.765 0.392 0.119

Standard errors in parentheses

Note: standard errors clustered at cluster level. All results are from OLS regressions which include field office area fixed effects. AP stands for at planting, and PP stands for post planting. 1AF recommends using
DAP at planting and CAN post planting. Row spacing and plant spacing are 1 if average spacing within 5 cm of recommended.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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treatment effect on practices suggests that at least some of these practices are likely persistent

effects of the treatment. So with all these improved practices, do pre-exposed farmers also reap the

higher yields associated with 1AF participation?

Table 6 investigates this by regressing our main outcome variables on a dummy for past 1AF

participation, within the control sample. As we can see, even though past participants employ

several of the recommended practices, this does not appear to translate into yield or profit impacts.

The point estimates are positive, but not statistically significant. To prod this a little further, we

also examine whether treatment impacts vary by baseline improved practice adoption.

Table 6: Primary outcomes, control sample

(1) (2) (3)
Maize PA Maize Per Farmer Profit

Past 1AF participant 13.798 107.610 33.587
(35.591) (66.350) (24.778)

Married 79.243 147.770 48.012
(47.858) (100.615) (36.859)

Household size 1.731 50.939∗∗∗ 17.028∗∗∗

(6.169) (14.495) (5.207)

Father, 2ary school (0/1) 41.460 334.502∗∗∗ 115.776∗∗∗

(40.433) (83.857) (30.261)

Farm labor >50% income 62.216∗∗ 212.421∗∗∗ 80.606∗∗∗

(30.502) (65.009) (24.454)

Observations 1089 1084 1084
R2 0.070 0.124 0.113
Non-PE Mean Dep. Var 1124.733 1081.431 1081.431

Standard errors in parentheses

Note: standard errors clustered at cluster level. All regressions include field office
area fixed effects. MHT p-value uses Jones et al. (2018) implementation of Westfall
and Young (1993) correction for multiple hypothesis testing.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

If practices matter, or drive the effects of the program, we might also expect farmers who already

adopt improved practices to benefit less from the program than farmers who are less well-informed.

Table 7 carries out an analysis with our primary sample to address this question. While the data on

improved practices is less detailed in our baseline data than in the follow-up, we have a few ways

of measuring improved practices. Column (1) of Table 7 interacts treatment with a dummy for

whether or not the farmer already used an improved seed variety at baseline. This interaction term

is negative and significantly different from zero. Columns (2) and (3) carry out a similar analysis for
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Table 7: Yields per acre and baseline practice use, primary sample

(1) (2) (3) (4) (5)

1AF participant=1 305.691∗∗∗ 243.044∗∗∗ 179.004∗∗∗ 489.591∗∗ 490.440∗∗

(88.237) (65.424) (60.765) (219.881) (220.952)

Used Improved Seed 48.304
on Maize or Beans=1 (54.617)

bl useddap=1 91.505∗

(54.216)

bl usedcan=1 44.253
(58.692)

bl practices=1 167.078∗

(95.239)

bl practiceindex=1 106.860
(98.923)

bl practiceindex=2 184.598∗

(98.229)

bl practiceindex=3 180.593∗

(102.264)

1AF participant=1 -171.346∗

× Used Improved Seed on Maize or Beans=1 (92.847)

1AF participant=1 -107.687
× bl useddap=1 (80.661)

1AF participant=1 -13.037
× bl usedcan=1 (73.038)

1AF participant=1 -339.600
× bl practices=1 (223.770)

1AF participant=1 -299.327
× bl practiceindex=1 (230.273)

1AF participant=1 -342.436
× bl practiceindex=2 (228.417)

1AF participant=1 -357.053
× bl practiceindex=3 (230.436)

Married 98.795 102.415 96.242 98.593 102.309
(62.622) (63.673) (62.903) (63.164) (63.942)

Household size 5.824 5.051 5.367 5.797 5.761
(7.242) (7.081) (7.101) (7.156) (7.221)

Father, 2ary school 8.992 4.052 4.832 7.703 4.650
(0/1) (44.995) (45.708) (45.089) (45.093) (44.989)

Farm labor >50% 28.731 28.569 29.776 28.404 29.264
income (48.797) (50.949) (49.902) (49.530) (50.657)

Observations 719 719 719 719 719
R2 0.111 0.110 0.107 0.111 0.113

Standard errors in parentheses

Note: standard errors clustered at cluster level. The outcome variable is maize yields per acre. All results are from OLS
regressions which include field office area fixed effects.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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whether or not the farmer used DAP or CAN, and while the interaction terms are negative. they

are not statistically significant.

Columns (4) and (5) explore instead an index indicating the number recommended practices

that a farmer adopted at baseline. This index is different from the one discussed in Section 4 as

we don’t have information on aspects like row spacing at baseline. The first of the two columns

employs a dummy variable equal to one if the farmer adopted one or more recommended practices

at baseline, and the second includes an indicator variable for each level of the index. Again, all the

interaction terms are negative but not statistically different from zero.

Taken together, these results provide some evidence that farmers learn from the 1AF program—

i.e., that information was indeed a constraint— and that they continue using improved practices

to some extent, but that these improved practices do not translate into substantially improved

yields. Table 7 suggests that the farmers who had access to improved seeds at baseline reap less

benefits from the program. Foreshadowing the analysis in the next section, this perhaps hints that

access—perhaps to improved inputs or to credit to purchase those inputs—play an important role.

5.2 Credit

The simplest test of whether credit matters maybe to examine whether or not treatment impacts

vary by baseline credit access. In other words, do farmers for whom some of the key constraints that

the program targets were less binding at baseline appear to reap lower benefits from the treatment?

For example, if the credit component of the program were the key to its success, we could imagine

that farmers who already had access to credit at baseline may see less of a boost from participating.

5.2.1 Direct analysis of credit constraints

We have in our data two measures of credit access: a narrower definition that includes only

respondents who reported having received a loan at baseline (“reported loan use”), and a broader

definition that also includes respondents who report that they could get a loan if needed (“credit

access”).6 It is important to note here that these questions were not targeted to input loans, and

we have reason to believe that cash loans may work quite differently from input loans. Setting aside

6The “reported loan use” question asked respondents “Have you received a loan or loans formally or informally
other than from OAF in the past year?” Credit access is elicited by asking respondents who said they had not received
a non-1AF loan in the past year, “...would [you] have been able to obtain a loan in the past year?”
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this concern for now, we interact these rudimentary measures of credit access at baseline with the

treatment. Table 8 reports the results of this simple analysis on per-acre maize yields.

Table 8: Yields per acre and credit

Primary Sample Full Sample
(1) (2) (3) (4)

maize pa maize pa maize pa maize pa

1AF participant=1 111.867∗ 153.981∗∗∗ 189.570∗∗∗ 168.853∗∗∗

(66.075) (44.927) (45.784) (29.697)

Credit access 2016=1 -106.178∗∗ -4.079
(44.929) (31.024)

1AF participant=1 78.417 -34.585
× Credit access 2016=1 (71.758) (47.886)

Received loan at -87.235∗∗ 41.030
baseline=1 (43.516) (33.493)

1AF participant=1 53.088 -19.905
× Received loan at baseline=1 (72.025) (44.410)

Past 1AF -38.044 -39.316
participant=1 (24.582) (24.434)

Married 106.730∗ 100.086 53.654 50.809
(61.473) (62.556) (34.026) (33.993)

Father, 2ary school -2.668 1.673 1.368 0.020
(0/1) (44.776) (44.973) (24.883) (25.075)

Farm labor >50% 22.122 23.226 46.158∗ 47.560∗

income (50.801) (50.612) (24.628) (24.549)

Prev. 1AF knowledge 38.990 43.421 72.655∗∗∗ 72.028∗∗∗

(63.067) (61.983) (26.301) (26.436)

Intercropped 2016 -12.794 -16.679 3.224 1.286
(45.153) (45.487) (24.876) (24.884)

Maize acres, 2016 34.448 34.489 13.500 11.699
(27.630) (27.369) (15.278) (15.452)

Household size 4.211 3.835 2.066 2.037
(7.652) (7.631) (4.333) (4.338)

Observations 719 719 1999 1999
R2 0.114 0.112 0.085 0.085
Non-PE. Ctrl Mean Dep. Var

Standard errors in parentheses

Note: standard errors clustered at cluster level. All results are from OLS regressions which include
field office area fixed effects.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Columns (1) and (2) of Table 8 show results in the smaller, primary sample and columns (3) and

(4) show the same regressions including the pre-exposed farmers. The latter two columns should be

interpreted with some caution since the pre-exposed farmers’ credit access may have been affected

by their previous interactions with 1AF (if their previous participation was in 2016), making credit
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access and loan receipt bad controls in those regression. Focusing therefore on the first two columns,

we can see that the treatment effects are very consistent with the main analysis in Section 4, but

that farmers with baseline credit access seem to have lower yields for both measures of credit access.

The interaction terms between baseline credit access and 1AF treatment status is positive but not

significantly different from zero. This suggests that at least using this imperfect measure of credit

access, treatment effects do not vary starkly with baseline credit access.

5.2.2 Indirect analysis of credit constraints: land assets

Given our concerns about the baseline credit variables, we look at the credit question from a few

additional angles: first, we examine whether treatment effects vary by collateralizable assets, i.e.,

do treatment effects vary with baseline land access? Second, we turn to our pre-exposed sample

and examine whether or not these farmers, having internalized the knowledge from their past 1AF

training, are able to obtain yields approaching those of treatment farmers. If not, this could suggest

that credit constraints may prevent pre-exposed farmers from obtaining the higher yields that

they reaped while they participated in the program. Third, we examine currently-treated farmers’

behaviors and yields on the land that they are farming but that they did not enroll in 1AF. If

behaviors differ on treated and untreated plots, this can provide suggestive evidence weighing the

relative importance of credit constraints versus information.

Figure 4 shows results using Generalized Random Forest methods. Covariates include all pre-

specified variables plus an index of soil quality on farmers’ fields; all other covariates are fixed at

the median. In future work, we will complement the GRF analysis with the recently developed

machine learning methods in Chernozhukov et al. (2018) as they appear to be more appropriate in

settings with many covariates. The results in Figure 4 suggest that the program is most effective for

farmers with the smaller land assets at baseline. Given 1AFs focus on small farmers, this is perhaps

unsurprising, but since farmers with low levels of land assets are also likely to have worse access to

input credit, it may be suggestive that credit constraints matter.

Table 9 shows a parametric version of the analysis in Figure 4: we regress maize yields in 2017 on

the treatment dummy, as well as an interaction with baseline acres planted in maize. Columns (1)

and (3) show results interacting continuous maize acreage, while columns (2) and (4) use an indicator

variable for planting more than three-quarters of an acre of maize. The continuous interactions
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Table 9: Yields per acre and baseline acres cultivated

Primary Sample Full Sample
(1) (2) (3) (4)

maize pa maize pa maize pa maize pa

1AF participant=1 186.569∗∗∗ 215.515∗∗∗ 248.140∗∗∗ 229.293∗∗∗

(62.845) (54.736) (37.882) (34.372)

1AF participant=1 -20.065 -81.600∗∗∗

× Maize acres, 2016 (49.454) (29.070)

.75+ acres last 8.750 106.281∗∗∗

season (56.889) (35.989)

1AF participant=1 -96.513 -126.666∗∗∗

× .75+ acres last season (73.662) (44.786)

Past 1AF -35.855 -36.091
participant=1 (25.054) (24.813)

Married 99.751 102.287 50.694 46.960
(63.397) (62.793) (34.028) (33.964)

Father, 2ary school -1.892 -0.883 0.690 0.773
(0/1) (45.197) (45.239) (24.739) (24.363)

Farm labor >50% 27.152 28.714 43.549∗ 43.966∗

income (50.321) (50.475) (24.227) (24.218)

Prev. 1AF knowledge 38.733 39.427 70.467∗∗∗ 69.447∗∗∗

(62.905) (62.007) (26.308) (26.222)

Intercropped 2016 -17.508 -17.980 1.534 0.715
(45.689) (45.530) (24.904) (24.968)

Maize acres, 2016 40.724 46.019 50.688∗∗ -5.839
(36.061) (32.713) (20.791) (19.389)

Maize acres, 2016 0.000
(.)

Maize acres, 2016 0.000
(.)

Household size 3.509 3.418 2.094 1.656
(7.640) (7.510) (4.289) (4.228)

Observations 719 719 1999 1999
R2 0.109 0.112 0.089 0.090
Non-PE. Ctrl Mean Dep. Var

Standard errors in parentheses

Note: standard errors clustered at cluster level. All results are from OLS regressions which include
field office area fixed effects.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Figure 4: Generalized Random Forest (GRF) analysis: Predicted treatment effects over the support
of baseline maize acres (other covariates held at median)

are negative, but only statistically different from zero in the full sample where we might worry

about past 1AF participation of some of the sample affecting how many acres farmers choose. Note,

however, that the analysis in Section 4 may assuage concerns along these lines, as it did not reveal

any impact of program participation on the number of acres planted in maize.

Similarly, the binary interactions have the signs that we would expect based on the GRF analysis,

but are only significant in the full sample. Figure 5 show the average marginal effect of treatment

for farmers above and below the 0.75-acre threshold at baseline, and the associated 95% confidence

intervals. These analyses provides some evidence that treatment has a larger impact on farmers

with less land assets. While land assets at baseline may be a correlated with credit access, we still

want to caution the reader that this remains speculative as we do not have randomized evidence of

the effect of extending input loans to farmers with and without credit access.

5.2.3 Indirect analysis of credit constraints: fertilizer use

Another way that we can examine credit constraints is to return to input use. Section 5.1 evaluated

whether or not input use defined as an either-or decision seemed relevant, but we have additional

data on the usage intensity that we can exploit. Figures 1 and 2 shown in Section 2 showed that the

unexposed control and treatment farmers look very similar in terms of the amount of fertilizer that

28



0-.75 acres last season

.75+ acres last season

M
ai

ze
 a

cr
es

 la
st

 s
ea

so
n

0 100 200 300
Predicted yield per acre

Primary sample

Predicted marginal effects of treatment
by reported baseline maize acres

0-.75 acres last season

.75+ acres last season

M
ai

ze
 a

cr
es

 la
st

 s
ea

so
n

50 100 150 200 250 300
Predicted yield per acre

Full sample

Predicted marginal effects of treatment
by reported baseline maize acres

Figure 5: Marginal effect of treatment by baseline maize acres

they apply on their fields at baseline (the red and green lines). If we additionally include pre-exposed

farmers (Figure 6; the blue and purple densities), we can observe that the pre-exposed are

not only more likely to use fertilizer in general, they also use substantially more of both DAP and

CAN than do control farmers. This figure is somewhat difficult to interpret, since the pre-exposed

farmers could actually be enrolled in the program during the baseline season, which could increase

their fertilizer rates mechanically. It could also be because these self-selected farmers were already

using more fertilizer before ever enrolling.

Turning to the current season, we can also examine whether the fertilizer amounts used by

pre-exposed and unexposed farmers varies once they are treated. Figure 7 splits the analysis by

pre-enrollment status and divides a farmer’s fields into enrolled and non-enrolled plots (blue and

purple lines represent non-enrolled plots). We can see that the impact on fertilizer use is completely

coming from the plots that are currently enrolled in the program. This holds for pre-exposed farmers

and new farmers alike. Given that pre-exposed farmers presumably appreciated the program (after

all, they chose to re-enroll!) why is there not more spillover onto their non-enrolled plots? It

appears that the purple distributions, representing pre-exposed treated farmers’ non-enrolled plots,

lie slightly to the right of the new treated farmers’ intensity distribution, but we cannot reject that

these are drawn from the same distribution.

Perhaps the most compelling explanation for the lack of spillovers between enrolled and non-

enrolled plots is that of credit constraints. If farmers can only afford to purchase the fertilizer

amounts that the program provides them with on loan, then they may be unable to afford to bring
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their other fields up to the recommended fertilizer intensity levels. Granted, alternative explanations

abound: farmers may choose to enroll only the plot that they believe will have the highest returns

to the program. We have little ability to examine this hypothesis directly. Yet another explanation

could be that the inputs that 1AF provides are of higher quality, and farmers do not want to

spend money on inferior inputs. As Bold et al. (2017); Tjernström et al. (2018) have demonstrated,

fertilizer is often missing advertised nutrient levels. As a next step on this project, we will explore

simulating counterfactual yields under full nutrient content to dig further into this question.

While we are still unable to separate the various program components in an entirely satisfactory

manner, we believe that the results from the last two sections provide reasonably strong evidence

that relaxing the information constraint on its own unlikely suffices. Work in progress includes

examining matching farmers in treatment and control on fertilizer intensity to examine whether we

can estimate participation effects beyond increased input use.

6 Robustness checks

In this section, we explore the robustness of our primary results to different samples, specifications,

and types of inference. Table 10 replicates the analysis in Table 3, except using the full sample that

includes pre-exposed farmers. In columns (1) and (2), we can see that the per-acre and per-farmer

maize yield impacts are very similar to those using the primary sample—while the point estimates

are smaller, they are not statistically different from the results reported in Section 4. Similarly,

the results shown in column (3) shows that treatment impacts on farm profits are a bit smaller

than those using the primary sample, but not by very much. Furthermore, all of the results remain

statistically greater than zero and economically meaningful even when using the full sample. This

suggests that including the pre-exposed farmers does not dramatically bias the estimated treatment

effects.

To assure the reader that the inclusion of covariates in our preferred specifications is not biasing

our results, Table 11 replicates the analysis from Table 3 including only the treatment dummy

(columns 1, 3, and 5) as well as regressions excluding covariates but including site fixed effects

(columns 2, 4, and 6). The stability of these results across the various specifications should help

persuade skeptical readers that covariate adjustment is not driving our results.
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Table 10: Primary outcomes, full sample

(1) (2) (3)
Maize PA Maize Per Farmer Profit

1AF participant 164.551∗∗∗ 281.794∗∗∗ 45.374∗∗

(25.917) (49.697) (18.523)

Past 1AF participant -33.953 3.233 2.787
(25.121) (63.445) (22.682)

Married 56.876 40.816 3.902
(34.417) (73.664) (27.238)

Father, 2ary school (0/1) 0.417 203.929∗∗∗ 70.936∗∗∗

(24.297) (51.499) (19.083)

Farm labor >50% income 36.643 102.909∗ 41.141∗

(26.277) (55.483) (20.923)

Used ag tech 2016 -8.145 -44.779 -22.872
(32.909) (67.917) (25.067)

Prev. 1AF knowledge 52.420∗ 63.991 16.601
(28.322) (55.526) (21.012)

Intercropped 2016 2.690 -52.260 -12.370
(25.419) (58.359) (21.511)

Credit access 2016 -19.559 -27.312 -19.833
(24.272) (52.687) (19.371)

Maize acres, 2016 25.481 393.505∗∗∗ 129.954∗∗∗

(16.498) (56.672) (20.521)

Household size 2.400 41.364∗∗∗ 13.601∗∗∗

(4.280) (9.691) (3.564)

Maize yield/acre, 2016 0.116∗∗∗ 0.379∗∗∗ 0.124∗∗∗

(0.032) (0.085) (0.031)

FAW Incidence -4.268∗ 1.163 0.767
(2.255) (4.320) (1.612)

Observations 1946 1785 1785
R2 0.097 0.225 0.182
MHT p-value for 1AF 0.000 0.000 0.016
Control Mean Dep. Var 1143.077 1145.997 377.541

Standard errors in parentheses

Note: standard errors clustered at cluster level. All regressions include field office
area fixed effects. MHT p-value uses Jones et al. (2018) implementation of Westfall
and Young (1993) correction for multiple hypothesis testing.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 11: Primary outcomes, primary sample

Maize PA Maize Per Farmer Profit
(1) (2) (3) (4) (5) (6)

1AF participant 183.748∗∗∗ 170.206∗∗∗ 376.650∗∗∗ 335.889∗∗∗ 85.175∗ 70.035∗∗

(46.300) (34.661) (131.786) (95.411) (46.110) (33.776)

Observations 754 754 679 679 679 679
R2 0.033 0.100 0.028 0.148 0.011 0.126
MHT p-value for 1AF 0.000 0.000 0.005 0.001 0.067 0.040
Control Mean Dep. Var 1124.733 1124.733 1081.431 1081.431 353.263 353.263
Site FE N Y N Y N Y

Standard errors in parentheses

Note: standard errors clustered at cluster level. All regressions include field office area fixed effects. MHT p-value
uses Jones et al. (2018) implementation of Westfall and Young (1993) correction for multiple hypothesis testing.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

To further prod the fidelity of our inference, we take a leaf from Young (2017) and implement a

randomization inference procedure using Heß (2017). For each regression, we randomly permute

the treatment dummy (maintaining cluster-level treatment assignment) 5,000 times, and for each

permutation calculate the hypothetical treatment effect. As with the standard adjustments for

multiple hypothesis testing, this method also does not result in any changes to the significance level

of the treatment coefficients. Figures 8-9 show the density of post-permutation treatment effect

estimates compared to the estimate from the true assignments.
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Figure 8: Randomization inference results with primary sample
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Figure 9: Randomization inference results with full sample

7 Conclusion

This paper presents evidence that a bundled intervention can be effective at increasing smallholder

productivity in a region where few interventions have succeeded at this goal. We demonstrate that

the effect is robust to a variety of specifications and robustness checks, and try to disentangle some

of the mechanisms underlying the program’s effectiveness.

In future work, we plan to further explore the mechanisms driving program effects. Linking this

work more closely with information on input quality and soil quality could further demonstrate how

local supply chains may limit the persistence of the effect of participating. Additionally, in the spirit

of Rosenzweig and Udry (2018), we could use regional weather data to explore the inter-temporal

external validity of the results. Finally, we have detailed information on labor allocation across

different plots, which we hope to use to better understand how farmers allocate complementary

inputs.
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Appendix

A Primary analysis: additional information

Maize yield measurements were taken by enumerators on two 40-square-meter areas selected from

farmer plots. Enumerators marked each area before farmers harvested any maize. For treated

farmers, two areas were marked each on enrolled and non-enrolled land. Additionally, if farmers

planned to harvest green maize from some parts of their plot, enumerators marked areas within

these parts for measurement. Yield variables use the average dry weight from the two marked

areas. For treated farmers, we average yields across enrolled and non-enrolled land, weighted by the

proportion of land farmers enrolled.

We calculate projected revenues using average market prices from nearby vendors covering post-

harvest months, multiplied by 1.08 to account for typical price increases over the consumption/selling

season. We calculate farmer costs using program costs and self-reported costs for treated farmers,

and self-reported seed and fertilizer costs for control farmers. Farm labor is valued using a local day

wage for agricultural labor, devalued by 50% (roughly the rural unemployment rate according to

DHS data).
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