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Abstract

In spite of the importance of agriculture sector and the persistently low agricultural

productivity, smallholders in Sub-Saharan Africa are unconcerned with the seemingly-

profitable modern technology - fertilizer, and at the same time are keen on the seemingly-

unbeneficial traditional technology - intercropping. This paper aims to solve that puzzle

and understand the rationale behind farmers’ decisions about agricultural technology

adoption. I construct a farmer’s decision-making model which takes into account both

the expected value and the variance of a farmer’s profit. Within this model, I build a

farmer’s production function that has three special properties: heterogeneous returns,

selection bias, and heterogeneous variances for each technology. Estimating this struc-

tural model with the Tanzania Living Standards Measurement Study panel dataset, I

discover that the expected returns of adopting the same technology vary significantly

across farmers. Furthermore, adopting fertilizer significantly increases expected yields

for farmers who adopt it every year, yet the higher expected returns are accompanied

by larger variances. On the other hand, adopting intercropping does not increase the

expected returns, but significantly decreases the variance of yields. Farmers’ technol-

ogy adoption decisions are influenced positively by the expected value of profits and

negatively by the variance of profits. These empirical results explain the low adoption

rates of an intensively promoted higher-average-return technology such as fertilizer, and

justify the high adoption rates of a seemingly-unprofitable technology such as intercrop-

ping.

Keywords: Technology adoption, heterogeneity in return, selection bias, risk aversion.
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1 Introduction

In Sub-Saharan African countries, the agriculture sector employs more than fifty percent

of the total labor force and provides on average fifteen percent of total GDP (OECD-FAO,

2016). Despite the importance of agriculture sector, farmers in these countries persistently

use traditional farming methods and face low agricultural productivity. Modern agricultural

technologies offer high expected returns on average and have been widely adopted in devel-

oped countries, but they have been seldom used in Sub-Saharan Africa. Numerous studies

have investigated and attempted to solve this conundrum. Various explanations are offered,

such as lacking information, missing input markets, and liquidity constraints, yet there is no

consensus on the justification. This paper aims to understand the rationale behind farm-

ers’ decisions about agricultural technology adoption. It examines a different hypothesis:

farmers’ decisions about adoption or non-adoption of modern technologies may be ratio-

nal responses to the return distributions they face. Expected returns and variances differ

across farmers and technologies. These differences could explain the variability in farmers’

technology adoptions.

Within the literature about agricultural technology adoption, a large collection of

studies focuses on the obstacles that have caused this insufficient usage, such as informa-

tion failure (Foster and Rosenzweig, 1995; Munshi, 2004; Conley and Udry, 2010), supply

shortages (Moser and Barrett, 2006), and credit constraints (Duflo et al., 2008). These stud-

ies implicitly assume that modern agricultural technologies are unambiguously better, and

therefore non-adoption must be the result of some failures - a market failure or an infor-

mation failure. While those factors contribute to the low and stagnating rate of technology

adoption, they cannot fully account for it. After decades of technology promotion and rapid

economic development, farmers have gained information on technologies and access to in-

puts. Yet, uptake of modern technologies remains low. One potential explanation for this is

that adoption of modern technology may not be optimal for everyone (Suri, 2011; Liu, 2013).

I examine this explanation and find results suggesting the assumption that low technology
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adoption is primarily driven by market failures may be incorrect.

This study contributes to the literature by constructing a model of farmer’s decision-

making which takes into account both the mean and the variance of a farmer’s profits.

Current literature about agricultural technology adoption is popularized with the expected

return models. However, in economies with limited insurance, the fluctuations in profits also

play crucial roles in farmers’ decisions. Both the expectation and the variability of profits

should be investigated. Furthermore, this paper borrows the concept of heterogeneity from

labor economics (Carneiro and Lee, 2004; Heckman and Li, 2004). The model allows the

effect on yield of adopting the same technology to be different across farmers and plots.

In addition, farmers are assumed to have knowledge of their own productivity for each

technology and choose which technology to adopt accordingly. Heterogeneous returns and

selection bias are equally relevant in the decisions about agricultural technology adoption,

but they have been understudied. This research attempts to fill in this gap, and relax the

common assumptions in the literature that farmers are both homogeneous and risk-neutral

expected value maximizers.

In my farmer’s decision-making model, I assume that farmers are expected utility

maximizers and may have preferences over both the mean and the variance of profits. At

the beginning of each farming season, farmers choose one agricultural technology set to

maximize their expected utility. They have four available choices: adopting nothing, adopt-

ing only inorganic fertilizer, adopting only intercropping, or adopting both fertilizer and

intercropping. The core of farmer’s decision making lays at farmer’s production, which is

substantially affected by his/her agricultural technology adoption choices. I construct the

farmer’s production function with three special properties: heterogeneous returns by farmer

and technology, selection bias by farmer, and heterogeneous variances by technology. An

important feature of my production model is that it allows farmers to consider multiple

technologies at once, rather than binary adoption decisions in isolation.

Empirically, I estimate this farmer’s decision-making model using the Tanzania Living
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Standards Measurement Study (LSMS) panel dataset. I first evaluate the farmer’s produc-

tion function using a correlated random coefficient (CRC) model. Next, I solve the intrinsic

characteristics of technology sets that affect the variance of productions through the feasible

generalized least squares (FGLS) method, and then I re-estimate the farmer’s production

function with weights. Lastly, I calculate farmers’ responses to both the expected value of

profit and the variance of profit (risk aversion level), and analyze the factors that influence

farmers’ agricultural technology adoption decisions.

My results show that expected returns to technology adoption vary across different

types of farmers and different technologies. Farmers are categorized into four groups based on

their adoption histories - never-adopter, dis-adopter, late-adopter, and always-adopter. For

farmers adopting only fertilizer and adopting both fertilizer and intercropping, the expected

returns in yields are significantly larger than zero for farmers who adopt it in every year,

aka always-adopters.1 The estimated expected returns of always-adopter are higher than

what a never-adopter would have achieved if he/she had adopted fertilizer or both tech-

nologies. This scenario indicates that farmers are rational, and many farmers do not adopt

fertilizer because it would not significantly increase their yields given their own and their

plot characteristics. In addition, the higher returns of adopting only fertilizer are accom-

panied by larger conditional variances of yields. On the other hand, compared to adopting

nothing, the additional expected return of adopting only intercropping is approximately zero

for every farmer. Nevertheless, adoption of intercropping leads to a significant reduction of

the conditional variance of yields. Furthermore, adopting both technologies is not a simple

summation of adopting only fertilizer and adopting only intercropping. This combination

represents a different technology. Using the solved distributions of profits, I demonstrate

that farmers respond positively to the expectation of profit and negatively to the variance

of profit when they make their technology adoption choices. Even after controlling for other

explanatory factors suggested in the literature on technology adoption, the influence of risk
1In this paper, I define “yield” as dollar values of outputs per acre.
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is still important and significant in the farmer’s decision-making process. When predicting

farmer’s probability of adopting each technology, if I set the variances of technologies to be

zero, rather than their true values, the probability of adopting only fertilizer increases from

4% to 11%, while the probability of adopting only intercropping drops.

This paper designs and solves a structural model of farmer’s technology adoption de-

cision. This model is built to include five properties - heterogeneity in return, selection bias,

heterogeneity in variance, mean-variance expected utility and multiple technologies, which

are examined separately in the previous literature. The comprehensiveness of this model

provides a better representation of the reality. With a precise understanding of farmers’

rationale for agricultural technology adoption decisions, agricultural development policy-

makers could target their policy prescriptions from various perspectives that affect farmers’

expected utilities. For instance, policy-makers may reallocate spending away from less ef-

fective programs that spread more information about well-known technologies, and instead

focus on insurance programs to nudge capable farmers from their rational low-mean and

low-variance equilibrium to a better equilibrium, thereby improving farmer welfare.

2 Literature Review

This study is connected with three groups of literature: literature about agricultural technol-

ogy diffusion and adoption in development economics, literature about heterogeneous returns

to investment and self-selection behavior in labor economics, and literature about agricul-

tural production in agricultural economics. It contributes to current work by constructing

and solving a farmer’s decision-making model through combining knowledge from multiple

disciplines.

Reviewing the studies about technology adoption, the most renowned theme is about

information failure, which leads to various learning models as solutions. Foster and Rosen-

zweig (1995) and Munshi (2004) both examine the adoption rates of high-yielding seed vari-

6



Heterogeneous Farmers’ Technology Adoption Decisions S. Jessica Zhu

eties in the Indian Green Revolution. Foster and Rosenzweig (1995) find evidence for both

learning by doing and learning from others or social learning. Imperfect knowledge impedes

farmers’ adoption decisions. This dynamic improves as farmers accumulate experience, and

the increases of both farmers’ own experiences and neighbors’ experiences significantly raise

seed profitability and adoption. Munshi (2004) reaches a mixed result over different crops:

wheat growers learn from neighbors’ experiences, while rice growers benefit from own ex-

periences. Along the social interaction line, Conley and Udry (2010) study the adoption of

fertilizer for pineapple growing in Ghana, and suggest that there is social learning; farm-

ers modify their input uses to align with their informative neighbors. Bandiera and Rasul

(2006) investigate the adoption of sunflower in Mozambique, and find that farmers’ behaviors

are strongly correlated with their families’ and friends’ actions. The overarching takeaway

for this cluster of studies is that technology adoption rates are likely to be low due to the

lack of information. However, when farmers overcome information barriers, either from own

experience or social experience, adoption is boosted. While information and learning have

been the center of explanations for low adoption rates, these concepts become less influential

nowadays, thanks to decades of technology promotions. In this research, I choose to study

modern technologies which are well-known by farmers, so that information issue could be

avoided.

The next commonly studied factors that hinder technology adoption are input scarci-

ties, such as credit constraints and labor shortages. Moser and Barrett (2003) examine the

adoption of the System of Rice Intensification (SRI) in Madagascar, and attribute the low

adoption rate to additional labor requirements. When households have used their family

labor and hired labor to the full capacity, seasonal liquidity constraints may exist if the

modern technology requires extra labors. Croppenstedt et al. (2003) work on data about

Ethiopia and find that lacking financial resources to buy fertilizer is one of the main rea-

sons for non-adoption. Duflo et al. (2008) experiment with farmers in Western Kenya for

fertilizer purchases, and realize that an effective commitment device at harvest period could
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increase the technology adoption rate by 11 to 14 percentage points. To reflect on the factor

insufficiency issue, I select a couple technologies that require different inputs. Specifically,

one technology would demand additional labors, and the other technology would request

monetary resources.

Even though the adoption literature primarily focuses on reasons that have caused

low adoption rates, a new strand of works appears with the null hypothesis that farmers make

rational adoption decisions. Liu (2013) investigates the role of individual risk attitudes in the

adoption decision of Bt cotton. Through a field experiment in China, she finds that farmers

adopt the technology at different time because of their various risk preferences. Farmers

who overweight small probabilities are the first adopters of Bt cotton, and farmers who

have higher levels of risk aversion or loss aversion adopt Bt cotton later. Although the data

which I use for this study do not measure risk preference explicitly, I estimate it from my

expected utility function. Suri (2011) examines the heterogeneity in returns among farmers

and finds that adopting a new technology may lead to large returns on average, but offer

very low returns for marginal farmers. Using hybrid maize adoption data from Kenya, she

discovers that farmers’ decisions are rational - among the non-adopters, they either have

approximately zero gross returns or face high costs, while adopters are farmers who enjoy

positive returns and low costs.

In Suri (2011), she analyzes the impact of farmers’ comparative advantage on their

technology adoption and heterogeneous productions. While this approach is new to the agri-

culture setting, it has been more developed in the field of labor economics. For example,

when examining the effect of schooling on wages, economists observe people’s wages and

education levels, but do not know about people’s abilities and the reasons behind people’s

educational choices. Roy (1951) writes that individuals self-select into fishing or hunting,

based on their own abilities. Lemieux (1998) finds that because of their comparative ad-

vantage across sectors, workers make corresponding decisions about choosing union jobs vs.

non-union jobs. Card (1994) claims that there are heterogeneities in returns to education;
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individuals understand that difference, know about their own abilities, and make their school-

ing choices accordingly. Similarly, Carneiro and Lee (2004) and Heckman and Li (2004) show

that people self-select into college education, and the increase in lifetime earning due to col-

lege attendance is significantly higher for people who attend college than for people who do

not attend college. To parallel the logic into agricultural study, one observes the revenues of

farmers and their technology adoption decisions, but do not witnesses the rationale and the

causal effect behind it. This study builds a farmer’s production function with heterogeneous

returns and self-selection features, and aims to decipher that unobserved rationale.

Furthermore, as Chavas and Pope (1982) suggest that models of agricultural produc-

tion decisions under risks should always consider production uncertainty, I incorporate the

riskiness of technology in my farmer’s production function as the third feature. Pope and

Just (1977) and Just and Pope (1979) propose a general stochastic specification for produc-

tion function, so that the effects of input on output and the effects of input on variability of

output could be different. I employ their recommended function form to examine the impact

of technology use on risk. In addition to obtaining a variance component of the produc-

tion function, my model further allows farmers to respond to the variance characteristics of

technology in their expected utility functions, based on their risk attitude. Constructing a

model that include all relevant traits, which have been studied separately in previous works,

offers a more comprehensive and precise description of farmers’ actions, and provides the

instrument to investigate the reasoning behind farmers’ behaviors.

3 Theoretical Model

Consider a rural village in the developing world. At the beginning of each farming season,

farmers choose which agricultural technologies to adopt for each plot, among various existing

technologies.
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3.1 Agricultural Technology

To center the analysis on productivity and risk, I select the agricultural technologies following

two criteria. First, I choose technologies which have existed and been promoted in the

developing world for a significant amount of time, so that the information and learning

effect could be limited. Secondly, for considering the diversification of modern technologies,

I choose technologies which have different benefit distributions, i.e. mean and variance, and

require distinct inputs. Specifically, I select two agricultural technologies: inorganic fertilizer

(F ) and intercropping (I). The rationale of selecting those particular technologies lays at the

heterogeneity of farmers’ preferences and the heterogeneity of technologies’ characteristics.

According to the literature (Day, 1965; Fuller, 1965; Horowitz and Lichtenberg, 1993; Piepho,

1998), fertilizer has potential to increase productions significantly, yet the benefits come with

large production risks. On the other hand, intercropping is a technique which can reduce

the variance of productions and improve the soil quality over time (Horwith, 1985).

In this paper, I concentrate on those two technologies. Nevertheless, they could be

generalized to any technology. Also, regarding the benefit distribution of a specific technol-

ogy, I focus on its mean and variance. This assumption could be justified from two angles.

Either the profit function has a distribution which the knowledge of mean and variance are

enough to describe the whole distribution, such as normal distribution, gamma distribution,

and beta distribution; or farmers mainly care about those two perspectives of benefits, mean

and variance. Future researches could expand the benefit distribution to include skewness,

as farmers may have larger downside risk aversions.

3.2 Farmer’s Decision-Making Model

At the beginning of each farming season, farmers choose the agricultural technology set that

they want to adopt. Farmers could adopt nothing (N), only fertilizer (F ), only intercropping

(I), or both fertilizer and intercropping (B). Adopting both fertilizer and intercropping is

considered a separate technology itself, which allows for more flexibility in the complemen-
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tarity and substitutability of those two main technologies. From those four available choices,

D = {N, F, I, B}, farmers pick one to achieve their goal, i.e. maximizing the expected

utility. Let hD =
{
hN , hF , hI , hB

}
be the adoption set containing 4 dummy variables (= 1

or = 0), which indicate farmers’ adoption decisions. After farmers decide the technology D,

the values of all hD are set. One, and only one, of those hD must equal 1 while the others

equal 0. For example, when farmers adopt only fertilizer, the model shows that hN = 0,

hF = 1, hI = 0, hB = 0; when farmers adopt both fertilizer and intercropping, the model

shows that hN = 0, hF = 0, hI = 0, hB = 1. Because each technology choice is exclusive to

others, the sum of four dummy variables is always one.

Assume farmers are expected utility maximizers. Their levels of expected utility are

affected by the production profit (π) - the expected profit (µ) and the variance of profit (v),

and the influences of those two factors are determined by the marginal utility of profit (m)

and the degree of risk aversion (ρ), as Equation 1:

max
hNijt,h

F
ijt,h

I
ijt,h

B
ijt

EUijt = mµijt + ρvijt(1)

s.t. µijt = E[πijt]

vijt = E[(πijt)
2]− (E[πijt])

2,

where i represents farmer, j refers to plot, and t stands for agriculture season.2 The choice

variables,
{
hNijt, h

F
ijt, h

I
ijt, h

B
ijt

}
, are factors of the production profits (π). The unit of analysis

is at the farmer-plot level (ij), due to the assumption that farmers make rational maximizing

decisions for each plot individually, rather than strategically allocate their resources across

all plots. If holding the belief that farmers enjoy high profits but suffer from a change of the

profit level (risk averse), I predict the directions of those two indices as m > 0 and ρ < 0.

The actual magnitudes and directions of those parameters are tested empirically.

Farmers’ production profits (π) are determined by the gross revenue (Y ) and the
2The unique identifier of data is at household-plot level. I address it as farmer-plot level for an easier

interpretation of following analysis, with the belief that if a plot belongs to the same household over time,
it is usually the same household member that plants it.
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farming cost (C),

(2) πijt = Yijt − Cijt.

Both the gross revenue and the farming cost are affected by the agricultural technology

adoption choices.

The total farming cost is a summation of two input costs - labor cost and fertilizer

cost,

(3) CD
ijt = labor costDijt + fertilizer costDijt.

The farming cost has a simple linear functional form and varies by the technology.

Assume the farmer’s production function has a Cobb-Douglas form. I define the

farmer’s production function of a plot under a particular technology set (D) as in Equation

4. Farmer’s revenues are affected by 3 components: 1) a technology-specific aggregate returns

to revenue, βD, which could be thought as a combination of the macroeconomic factors and

the characteristics of the agricultural technology set that affect the average revenues, 2) k

exogenous observable farming inputs (X), such as precipitation amounts and temperature

levels, 3) a technology-specific error (uD) , including time-invariant unobservable farmer

and technology characteristics, and time-varying random production shocks. Taking logs

of Equation 4, I get Equation 5, where yijt is the log of revenue, and other variables are

redefined to stand the logs of their corresponding variables.

Y D
ijt = eβ

D
t (

k∏
m=1

Xγm
ijtm)e(u

D
ijt)(4)

yDijt = βDt + xijt
′γ + uDijt,(5)

where xijt is a vector with dimension k× 1, γ is a vector of the output elasticity of farming

inputs. Assume the gross yield (Y ) follows a lognormal distribution, and thus the log of

yield (y) follows a normal distribution.

A point to note, in the current model set-up, I contribute both the extra quantity

of inputs required by a particular technology set and their associated input intensity effects

to the technology-specific aggregate returns component, counting those impacts as the tech-

nology attribute which affects the mean of revenues (βD); γ is not technology-specific. In
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addition, the yield variables are expressed as ratios of the land size, i.e. per acre. Farmers

would produce only when their expected profits are not negative.

For simplicity, I make two assumptions in this model. Firstly, there is no risk sharing

or strategical cooperation in the village. Farmers make their own decisions based on their

unique situations and are not influenced by their neighbors’ experience. Secondly, because

the farming inputs and crops choices are not the focus of this paper, I assume that once a

farmer chooses the technology he/she would like to use, the other inputs are predetermined.

For example, if he/she chooses intercropping, that implies a set amount of labor input. In

addition, the agricultural yields are presented as monetary values, so that the types of crops

are less relevant.3 The outcome variable could be perceived as one scalar, rather than a

vector of various crop productions.

3.3 Farmer’s Production Function

The core of farmers’ decision making lays at farmers’ productions; while farmers’ revenues are

substantially affected by their agricultural technology adoption choices. To study the impact

of technology adoption, I follow the methodology in labor economics and put additional

structure into the production function. When examining the effect of education on wages,

labor economists state two important issues needed to be considered: 1) returns to schooling

are heterogeneous in the population, 2) the unobservable ability in the residual term is

correlated with the regressor - schooling, as individuals know their abilities and choose their

education levels accordingly. Analogously, one could suspect that the effects of adopting

the same technology on revenues are different across farmers and plots. More importantly,

farmers may have good estimations of their productivity of each technology and choose the

adoption accordingly. In the following two sub-sections, I present these two properties in my

production function.
3The influences of crop choices on technology adoptions are examined in the robustness checks section.
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3.3.1 Heterogeneity in Return

Equation 5 shows a farmer’s production function of adopting a specific technology set. In

each farming season, farmers could adopt any agricultural technology, the observed revenue

could be written as below,

yijt =
∑
D

hDijty
D
ijt(6)

= hFijt[β
F
t + xijtγ + uFijt] + hIijt[β

I
t + xijγ + uIijt]

+hBijt[β
B
t + xijtγ + uBijt] + (1− hFijt − hIijt − hBijt)[βNt + xijtγ + uNijt]

⇒ yijt = βNt + xijtγ + [(βFt − βNt ) + (uFijt − uNijt)]hFijt(7)

+[(βIt − βNt ) + (uIijt − uNijt)]hIijt + [(βBt − βNt ) + (uBijt − uNijt)]hBijt + uNijt.

Examining the three coefficients placed in front of the adoption dummies, [(βFt − βNt ) +

(uFijt− uNijt)], [(βIt − βNt ) + (uIijt− uNijt)], [(βBt − βNt ) + (uBijt− uNijt)], they represent the returns

to adopting only fertilizer, adopting only intercropping, and adopting both technologies,

respectively. Because all three coefficients include a uDijt − uNijt term, which varies at the

farmer-plot level (ij), the production function has the feature of heterogeneous return: re-

wards of each agricultural technology are farmer-plot-specific. Returns are random variables

with distributions. Estimating Equation 7 requires a random coefficient model.

3.3.2 Selection Bias in Adoption and Uncertainty of Production

To analyze the unobserved heterogeneity and the uncertainty of production deeper, I de-

compose the technology-specific error terms into two parts: productivity and shock. I put

additional structure on those two parts. For each farmer, he/she always has a general farm-

ing productivity (θij); if he/she adopts any technology, he/she also has a second productivity

component in term of that technology (θDij ). For the shock term, I assume that there is an

individual level idiosyncratic shock (ε), such as E(ε) = 0 and V (ε) = 1. More importantly,

the level of shock is amplified by a characteristic of the adopted technology (αD), which

captures the variability of yields across different technologies. This multiplicative setup of
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the shock term follows the concept of Just-Pope production function model (1977), to allow

distinct effects between the effect of technology on output and the effect of technology on

variability of output. The technology-specific production functions are modified as below:

yNijt = βNt + xijtγ + θij + (αN)
1
2 εijt(8)

yFijt = βFt + xijtγ + θij + θFij + (αF )
1
2 εijt(9)

yIijt = βIt + xijtγ + θij + θIij + (αI)
1
2 εijt(10)

yBijt = βBt + xijtγ + θij + θBij + (αB)
1
2 εijt.(11)

Rewritten the observed revenue using elaborated production functions,

yijt =
∑
D

hDijty
D
ijt(12)

= βNt + xijtγ + (βFt − βNt )hFijt + (βIt − βNt )hIijt + (βBt − βNt )hBijt

+θij + θFijh
F
ijt + θIijh

I
ijt + θBijh

B
ijt + εijt{(αN)

1
2

+[(αF )
1
2 − (αN)

1
2 ]hFijt + [(αI)

1
2 − (αN)

1
2 ]hIijt + [(αB)

1
2 − (αN)

1
2 ]hBijt}

= βNt + xijtγ + θij + [(βFt − βNt ) + θFij ]h
F
ijt

+[(βIt − βNt ) + θIij]h
I
ijt + [(βBt − βNt ) + θBij ]h

B
ijt + εijt{(αN)

1
2

+[(αF )
1
2 − (αN)

1
2 ]hFijt + [(αI)

1
2 − (αN)

1
2 ]hIijt + [(αB)

1
2 − (αN)

1
2 ]hBijt}.

Looking at the three coefficients placed in front of the adoption dummies again, (βFt −βNt )+

θFij , (βIt − βNt ) + θIij, (βBt − βNt ) + θBij , they are returns to technology adoption, including

an observed aggregate return term, and an unobserved productivity term. Because farmers’

adoption decisions (hDijt) and their expected profits (πijt) are tied together as in Equation 1,

and farmers’ productivity (θDij ) and their production outputs (yijt), thus their expected profits

(πijt), are correlated as in Equation 12, farmers’ productivity (θDij ) and farmers’ adoption

decisions (hDijt) are mutually related too. Given part of the coefficient on hDijt, parameter θDij ,

is correlated with the independent variable hDijt, the empirical analysis should be carried out

through a correlated random coefficient model with a control function.
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3.4 Variability of Farmer’s Production Function

For simplification, I make some redefining definitions, as below:

βdt − βNt ≡ β̃d ∀d, d ∈ D, d 6= N and ∀t(13)

εijt{(αN)
1
2 + [(αF )

1
2 − (αN)

1
2 ]hFijt + [(αI)

1
2 − (αN)

1
2 ]hIijt + [(αB)

1
2 − (αN)

1
2 ]hBijt} ≡ eijt.(14)

Equation 13 indicates that the difference in aggregate returns to revenues between adopting

nothing and adopting some technology are constant over time; while the base, the aggregate

returns to revenues of adopting nothing can be varied over time due to macroeconomic and

environment conditions. Equation 14 is for the purpose of an easier writing. The observed

farmer production function becomes,

(15) yijt = βNt + xijtγ + β̃FhFijt + β̃IhIijt + β̃BhBijt + θij + θFijh
F
ijt + θIijh

I
ijt + θBijh

B
ijt + eijt.

Unlike most of traditional production functions, I do not assume a priori an unified

influence of technology adoptions on the mean and the variance of yields. From the farmer’s

production function, Equation 15, I obtain the variance of yield,4

V ar{yijt} = γ2var{xijt}+ (̃β
F

)2V ar{hFijt}+ (̃β
I
)2V ar{hIijt}+ (β̃B)2V ar{hBijt}(16)

+V ar{θij}+ V ar{θFijhFijt}+ V ar{θIijhIijt}+ V ar{θBijhBijt}+ V ar{eijt}.

3.5 Summary

To sum up, in each farming season, farmers choose the adoption of a technology to maximize

their expected utilities, which are affected by the expected value of profits and the variance

of profits. The expected profits depend on the technology adopted and farmer-specific pro-

ductivity, thus vary by both the technology and the farmer. The variances of profits depend

on the technology adopted and the random shock, hence in expectation only vary by the

technology. Based on the characteristics of technologies, farmers’ technology-specific produc-

tivity, and farmers’ responses to the profit value and the risk level, farmers make individual

adoption decisions.
4The detailed steps for obtaining the variance of yield are in Appendix B.
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4 Data

The dataset employed by this research is the Tanzania National Panel Survey (TZNPS),

which is part of the World Bank Living Standards Measurement Study (LSMS). It is a

nationally-representative integrated household survey. It is repeated biennially and has four

waves: 2008-2009, 2010-2011, 2012-2013, and 2014-2015. In this paper, I use the middle two

waves of data, 2010-2011 round and 2012-2013 round, since they use more similar question-

naires and have more overlapping samples. The Tanzania National Panel Survey covers a

broad range of topics. The main subjects I concentrated on are its extensive information of

households’ farming practices and demographic characteristics.

4.1 Household and Plot Characteristics

The TZNPS sampled 26 regions out of 31 regions of Tanzania, aiming to be representative

for the whole country. In round 1 (2008-2009), it surveyed 125 districts, 337 enumeration ar-

eas/villages, 3265 households, and 5152 plots. In the following rounds, all original households

were revisited and re-interviewed. If any adult members have moved to other locations, they

were all tracked and re-interviewed at current locations with their new households. Because

of the splitting off, in round 2 (2010-2011), the survey contained 129 districts, 368 enumer-

ation areas/villages, 3924 households, and 6038 plots; in round 3 (2012-2013), the survey

covered 132 districts, 384 enumeration areas/villages, 5010 households, and 7457 plots.5 In

all later (non-first) rounds of data, the surveys included unique household and plot identifiers

of both the current round and the previous round. Thus, if the household or the plot have

been interviewed before, I could match them across data rounds.

For all data analysis, I use a balanced panel constructed from round 2 and round

3 data. The reason for a balanced panel is that estimating my structural model requires

knowing farmers’ adoption choices of all years. In each year, about 80% of plots were
5The data expansion across rounds is relative huge comparing to other studies; but this pattern is verified

both by the survey documents and the dataset.
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cultivated, 10-15% of plots were fallow, and the rest of plots were rented out, given out, forest,

or in other use. Moreover, among the cultivated plots, 5% of plots were not harvested due

to destruction (3%), still growing in plot (1%), and other reasons (1%), when the interviews

were conducted. Limiting the sample to plots that have been cultivated and harvested in

both rounds, there are 1638 households and 2539 plots.6 I further restrict the sample to

observations with non-missing values for all variables used in the analysis, and end up with

1628 households and 2523 plots, aka the analysis sample.

Table 1 presents the descriptive statistics of sampled households. Around 87% of

households located at rural area, yet some urban households cultivated plots in the long

rainy season as well. Most of households had male heads, about 77%. Roughly 85% of

household heads had the main occupation in agriculture, while other household members

could be in charge of the household farming too. The average family size was 5.8, including

3.3 active members (age 12-60) and 2.5 dependents (children and elders). The average annual

temperature was about 22.6◦C; and the average annual rainfall in the past 12 months was

round 800mm.

Table 2 describes the characteristics of plots. On average, plots were 2.9 acres, had

above average soil quality where 1 stands for bad quality and 3 stands for good quality, and

medium steepness where 1 stands for flat and 3 stands for very steep. Very few plots (4%)

had been fallowed before7; while approximately 75% of plots could be sold by their belonging

households. Each plot usually used 64 days per acre of family labor, with helps from hired

labors that were worth 6 dollar per acre. Also, around 1 dollar worth of pesticides were

applied on the plot. Lastly, the harvest amounts were about 124 dollars per acre.8

6The sample size has dropped significantly because in each year, different plots got fallow and happened
to be not harvested. The accumulation of rotated 24% (= 1− 80%× 95%) has resulted a large amount.

7This low rate could be due to my selection of plots that were not fallowed in both farming season
2010-2011 and farming season 2012-2013.

8These harvest values are farmers’ self-reported estimated values of their harvests. Given that farmers
may have different perceptions for crop prices, later I will create another harvest value variable using reported
harvest quantities (kg), and village prices and/or district prices as robustness checks.
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4.2 Farming Practices

Table 3, a transition matrix of farmers’ adoptions, shows descriptive statistics of farmers’

adoption of the four exclusive agricultural technology mentioned in Section 3.2, at the farmer-

plot level. Across the two farming seasons, the percentages of technology adoptions at farmer-

plot level were stable. There were approximately 37.6%-39.5% of plots adopted neither

technology, 7.8%-8.0% of plots adopted only fertilizer, 44.1%-45.6% of plots adopted only

intercropping, and 8.6%-8.8% of plots adopted both technologies. Nevertheless, if reading

the diagonal of Table 3, one could see that only 58.5% of plots adopted the same technology

across two years, and the other half of plots experienced different technologies over time. The

technology switching behaviors of farmers are essential for the structural model estimation,

i.e. creating the counterfactual.

5 Empirical Strategy

To empirically study farmers’ decisions about agricultural technology adoption, I estimate

the farmer’s decision-making model through four parts. In the first step, I evaluate the

farmer’s production function as a correlated random coefficient (CRC) model, and substi-

tute farmer’s unobservable and endogenous productivity with its linear projection on the

farmer’s full history of adoptions and their interactions. In the second step, I decompose

the previously estimated residual term of farmer’s production function through the feasible

generalized least squares (FGLS) method. Thus, I separate out the intrinsic characteristic of

technology set that affects the variance of productions. Then, I re-estimate the production

function with a weight derived from the previous step, thus all coefficients are updated to

be both consistent and asymptotic efficient. Lastly, I bring the estimated production values

back into the farmer’s expected utility function. Using the alternative-specific conditional

logit method, I calculate farmers’ responses to the expected value of profit and the variance

of profit, and analyze factors that influence farmers’ technology adoption decisions.
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5.1 Estimate the Farmer’s Production

I estimate the farmer’s production function using a correlated random coefficient model, for

addressing heterogeneous returns and selection bias.

Equation 15 is my main empirical specification. To eliminate the dependence between

the farmer’s productivity (θ) and their endogenous adoption decisions (h), I follow the idea of

Chamberlain (1984) and Suri (2011), and replace the unobservable θ with its linear projection

on the farmer’s full history of adoptions and their interactions. As there are two periods

in the dataset, the linear projection for each technology-specific productivity and general

farming productivity are defined as following:

θFij = λF0 + λF1 h
F
ij1 + λF2 h

F
ij2 + λF3 h

F
ij1h

F
ij2 + νFij(17)

θIij = λI0 + λI1h
I
ij1 + λI2h

I
ij2 + λI3h

I
ij1h

I
ij2 + νIij(18)

θBij = λB0 + λB1 h
B
ij1 + λB2 h

B
ij2 + λB3 h

B
ij1h

B
ij2 + νBij(19)

θij = λN0 + λN1 (1− hFij1 − hIij1 − hBij1) + λN2 (1− hFij2 − hIij2 − hBij2)(20)

+λN3 (1− hFij1 − hIij1 − hBij1)(1− hFij2 − hIij2 − hBij2) + νNij .

In addition, I normalize all productivities, so that
∑

n θ
F
ij = 0,

∑
n θ

I
ij = 0,

∑
n θ

B
ij = 0, and∑

n θij = 0, where n stands for the number of observations (farmer-plot) in the sample.

Substituting all linear projections, Equation 17 - 20, into the production function,

Equation 15, and writing it out period by period, I obtain the structural equations, Equation
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21 - 22.

yij1 = (βN1 + λN0 + λN1 + λN2 + λN3 ) + xij1γ(21)

+(β̃F + λF0 + λF1 − λN1 − λN3 )hFij1 − (λN2 + λN3 )hFij2 + (λF2 + λF3 + λN3 )hFij1h
F
ij2

+(β̃I + λI0 + λI1 − λN1 − λN3 )hIij1 − (λN2 + λN3 )hIij2 + (λI2 + λI3 + λN3 )hIij1h
I
ij2

+(β̃B + λB0 + λB1 − λN1 − λN3 )hBij1 − (λN2 + λN3 )hBij2 + (λB2 + λB3 + λN3 )hBij1h
B
ij2

+λN3 h
F
ij1h

I
ij2 + λN3 h

F
ij1h

B
ij2 + λN3 h

I
ij1h

F
ij2 + λN3 h

I
ij1h

B
ij2 + λN3 h

B
ij1h

F
ij2 + λN3 h

B
ij1h

I
ij2

+νNij + νFijh
F
ij1 + νIijh

I
ij1 + νBijh

B
ij1 + eij1

yij2 = (βN2 + λN0 + λN1 + λN2 + λN3 ) + xij2γ(22)

−(λN1 + λN3 )hFij1 + (β̃F + λF0 + λF2 − λN2 − λN3 )hFij2 + (λF1 + λF3 + λN3 )hFij1h
F
ij2

−(λN1 + λN3 )hIij1 + (β̃I + λI0 + λI2 − λN2 − λN3 )hIij2 + (λI1 + λI3 + λN3 )hIij1h
I
ij2

−(λN1 + λN3 )hBij1 + (β̃B + λB0 + λB2 − λN2 − λN3 )hBij2 + (λB1 + λB3 + λN3 )hBij1h
B
ij2

+λN3 h
F
ij1h

I
ij2 + λN3 h

F
ij1h

B
ij2 + λN3 h

I
ij1h

F
ij2 + λN3 h

I
ij1h

B
ij2 + λN3 h

B
ij1h

F
ij2 + λN3 h

B
ij1h

I
ij2

+νNij + νFijh
F
ij2 + νIijh

I
ij2 + νBijh

B
ij2 + eij2.

Because the coefficients of structural equations could not be directly identified, I write out

the corresponding reduced forms, Equation 23 - 24.

yij1 = κ1 + xijtγ + η1h
F
ij1 + η2h

F
ij2 + η3h

F
ij1h

F
ij2(23)

+η4h
I
ij1 + η5h

I
ij2 + η6h

I
ij1h

I
ij2 + η7h

B
ij1 + η8h

B
ij2 + η9h

B
ij1h

B
ij2

+η10h
F
ij1h

I
ij2 + η11h

F
ij1h

B
ij2 + η12h

I
ij1h

F
ij2 + η13h

I
ij1h

B
ij2

+η14h
B
ij1h

F
ij2 + η15h

B
ij1h

I
ij2 + ςij1

yij2 = κ2 + xijtγ + η16h
F
ij1 + η17h

F
ij2 + η18h

F
ij1h

F
ij2(24)

+η19h
I
ij1 + η20h

I
ij2 + η21h

I
ij1h

I
ij2 + η22h

B
ij1 + η23h

B
ij2 + η24h

B
ij1h

B
ij2

+η25h
F
ij1h

I
ij2 + η26h

F
ij1h

B
ij2 + η27h

I
ij1h

F
ij2 + η28h

I
ij1h

B
ij2

+η29h
B
ij1h

F
ij2 + η30h

B
ij1h

I
ij2 + ςij2.
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Several variables are redefined in the process for simplification:

κ1 = βN1 + λN0 + λN1 + λN2 + λN3(25)

κ2 = βN2 + λN0 + λN1 + λN2 + λN3(26)

ςij1 = νNij + νFijh
F
ij1 + νIijh

I
ij1 + νBijh

B
ij1 + eij1(27)

ςij2 = νNij + νFijh
F
ij2 + νIijh

I
ij2 + νBijh

B
ij2 + eij2.(28)

Using 30 reduced form parameters (η1-η30), I can solve 19 structural parameters (λF0 ,

λF1 , λF2 , λF3 , λI0, λI1, λI2, λI3, λB0 , λB1 , λB2 , λB3 , λN0 , λN1 , λN2 , λN3 ,β̃F , β̃I , β̃B). Given that each λD0

could be written as a function of λD1 , λD2 , and λD3 , I eliminate all four λD0 , and only need

to estimate 15 structural parameters (λF1 , λF2 , λF3 , λI1, λI2, λI3, λB1 , λB2 , λB3 , λN1 , λN2 , λN3 ,β̃F ,

β̃I , β̃B).

The detailed estimation steps are as follows. Firstly, I estimate the reduced form

equations, Equation 23 - 24, as a set of seemingly unrelated regressions. I save 30 reduced

form parameters in a vector R[30×1], and preserve the variance-covariance matrices from those

2 equations into 1 block matrix V[30×30]. Then, because of the restrictions on parameters

between the structural equations and reduced forms, I require R = Hψ, where H[30×15]

is the restriction matrix listed in Appendix A, and ψ[15×1] is the vector of 15 structural

parameters. Last, I employ the optimal minimum distance (OMD) method to solve the

structural parameters ψ,

minψ = {R−Hψ}′V −1{R−Hψ}(29)

⇒ ψ∗ = (H ′V −1H)−1H ′V −1R.(30)

The standard errors and confidence intervals of structural parameters are estimated

through bootstrap. I draw 3100 random samples with replacement from the analysis sample,

with stratified at the rural/urban level and clustered at the cluster level, i.e. the village

for rural areas and the enumeration area for urban areas. The actual number of iterations

(T ) used for creating statistics depend on the number of converged sample. The calculation
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formulas for standard errors are listed below (Hansen, 2015), using β as an example,

β̄∗ =
1

T

T∑
b=1

β̂∗b(31)

ŝe(β̂) =

√√√√ 1

T − 1

T∑
b=1

(β̂∗b − β̄∗).(32)

The calculation formula for confidence intervals is following (Hansen, 2015), using β as an

example,

(33) CI = [β̂ − q∗T (1− α/2), β̂ − q∗T (α/2)],

where q∗T (α) is the quantile function of the bootstrap distribution, FT (β̂∗b ) = β̂ − β̂∗b , and α

is the chosen significance level.

5.2 Estimate the Variability of Farmer’s Production

It is important to understand the impact of agricultural technology on both the mean and

the variance of yields. So I estimate the variability of yields as follows.

Following the variance of yield (Equation 16), given a selected data sample, I can

write the conditional variance of yields,9

(34) V ar{yijt|xijt, hDijt} = V ar{eijt|xijt, hDijt}.

Recall eijt is the error term of the structural model. Revisit Equation 14, where I have

defined eijt,

eijt = εijt{(αN)
1
2 + [(αF )

1
2 − (αN)

1
2 ]hFijt + [(αI)

1
2 − (αN)

1
2 ]hIijt + [(αB)

1
2 − (αN)

1
2 ]hBijt}(35)

= εijt{(αN)
1
2 (1− hFijt − hIijt − hBijt) + (αF )

1
2hFijt + (αI)

1
2hIijt + (αB)

1
2hBijt}

=
∑
d∈D

(αd)
1
2hdijtεijt.

Substituting it into Equation 34, I have

V ar{yijt|xijt, hDijt} = V ar{eijt|xijt, hDijt}(36)

= E[αNhNijt|xijt, hDijt] + E[αFhFijt|xijt, hDijt] + E[αIhIijt|xijt, hDijt] + E[αBhBijt|xijt, hDijt].
9The detailed steps for obtaining the conditional variance of yield are in Appendix B.
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In addition, by the definition of variance, I know,

(37) V ar{eijt|xijt, hDijt} = E[e2ijt|xijt, hDijt]− E[eijt|xijt, hDijt]2 = E[e2ijt|xijt, hDijt].

Combining Equation 36 and Equation 37 together,

V ar{yijt|xijt, hDijt} = V ar{eijt|xijt, hDijt}(38)

= E[e2ijt|xijt, hDijt]

= E[αNhNijt|xijt, hDijt] + E[αFhFijt|xijt, hDijt] + E[αIhIijt|xijt, hDijt] + E[αBhBijt|xijt, hDijt].

From this equation, one could see that the conditional variance of yield is clearly affected by

the individual technology choice. It indicates a case of heteroskedasticity.

To examine the impact of the variance characteristic (αD) of adopted technology (hDijt)

on the variability of yields, I adopt the feasible generalized least squares (FGLS) estimation

method. Assume the conditional variance of yield has an exponential function form, to

guarantee positive values for estimated variances,

V ar(yijt|xijt, hDijt) = exp{αNhNijt + αFhFijt + αIhIijt + αBhBijt + uijt}.(39)

Because coefficients from the first-step estimating the production function are consistent,

ê2ijt is a consistent estimator of e2ijt. I can estimate the variance function with an ordinary

least squares regression as following,

ê2ijt = exp{αNhNijt + αFhFijt + αIhIijt + αBhBijt + uijt}(40)

⇒ log(ê2ijt) = αNhNijt + αFhFijt + αIhIijt + αBhBijt + uijt,(41)

where êijt is the residual term from the first step estimation and log(ê2ijt) is calculated. For

an easier interpretation of the technology effects, I also estimate an equivalent equation,

log(ê2ijt) = ι0 + α̃FhFijt + α̃IhIijt + α̃BhBijt + uijt.(42)

The coefficients placed in front of adoption dummy variables, α̃F , α̃I , α̃B, represent the

impacts of adopting technologies - fertilizer, intercropping, and both technologies - on the

variances of farmers’ yields, respectively, in addition to the impact of adopting nothing.

One could perceive those impacts as intrinsic characteristics of those technologies. Some

technologies lead to a larger variation in the yields, while others reduce that variability.
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5.3 Re-Estimate the Farmer’s Production

Because of the heteroskedasticity which is demonstrated in the second step, coefficients of

the production function acquired through the CRC model in the first step are unbiased and

consistent, but inefficient. To correct the heteroskedasticity, I re-estimate the production

function with a weight. The weight is the estimated conditional standard deviation of yield,

i.e. the square root of the exponential of the fitted value, ωijt =
√
efitted value =

√
e

̂log( ˆeijt
2).

The updated estimators of structural parameters are now unbiased, consistent, and asymp-

totically efficient.

5.4 Estimate Farmer’s Expected Utility

After fully solved the log version of production function, I progress to the underlying structure

of farmers’ technology adoption decisions.

To estimate the farmer’s expected utility function, several additional calculations are

required. From the previous three steps, I have derived the conditional expected value and

the conditional variance of log of yield through computing the linear predictions after the

regression analysis. The specific values are calculated as below. The first groups of equations

list the conditional expected values of log of yields under each technology adoption scenario:

E[ ˆyNijt|xijt, hNijt = 1] = β̂Nt + xijtγ̂ + θ̂ij(43)

E[ ˆyFijt|xijt, hFijt = 1] = β̂Ft + xijtγ̂ + θ̂ij + θ̂Fij(44)

E[ ˆyIijt|xijt, hIijt = 1] = β̂It + xijtγ̂ + θ̂ij + θ̂Iij(45)

E[ ˆyBijt|xijt, hBijt = 1] = β̂Bt + xijtγ̂ + θ̂ij + θ̂Bij .(46)

Next groups of equations list the conditional variance of log of yields under each technology
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adoption scenario:

V ar[ ˆyNijt|xijt, hNijt = 1] = e
̂log(ê2ijt) = eâ

N(47)

V ar[ ˆyFijt|xijt, hFijt = 1] = e
̂log(ê2ijt) = eâ

F(48)

V ar[ ˆyIijt|xijt, hIijt = 1] = e
̂log(ê2ijt) = eâ

I(49)

V ar[ ˆyBijt|xijt, hBijt = 1] = e
̂log(ê2ijt) = eâ

B
.(50)

The conditional expected values of log of yields vary by both the technology and the

farmer-plot, while the conditional variance of log of yields only differ by the technology.

Yet, the variables needed in the expected utility function are the conditional expected

value and the conditional variance of yield. With the assumption that the yield follows a

lognormal distribution, I translate those values of log of yield to values of yield through the

distribution formula. Because y ∼ N (E[y], V ar[y]) and Y = ey, I have E(Y ) = eE[y]+0.5V ar[y],

and V ar(Y ) = [eV ar[y] − 1] × [e2E[y]+V ar[y]]. As a result, for each farmer-plot, I have 4

conditional expected values of yield and 4 conditional variance of yield, corresponding to

each technology adoption case.

In addition, recall the farming cost is defined as a summation of the labor cost and

the fertilizer cost, CD
ijt = laborcostDijt+fertilizercost

D
ijt. All costs are calculated as dollar per

acre. The labor costs include both the family labor values and the hired labor values.10 For

each technology, I calculate the average labor costs and fertilizer costs among farmers who

adopted that technology in a village (rural) / an enumeration area (urban), and then apply

those average costs to all farmers in that specific village/enumeration area. As a result, the

farming costs vary by the technology choice, the location, and the farming season. For each

farmer-plot, I have 4 estimated farming costs, one for each technology adoption case.

Following the definition of profit as in Equation 2 and given that the farming cost is
10The family labor values are computed through multiplying the adjusted total family labor days with

the adjusted labor day wage. The adjusted total family labor days are the half of self-reported total family
labor days. According to Arthia et al. (2018), at the plot level, the family labor usages reported in the
TZNPS through the recall-survey method were about 1.83 times higher than the “true” labor usages, which
were collected through weekly visits. The adjusted labor day wage are estimated using the subsistence
agricultural worker’s day wage and the hired labor’s day wage and then devalued by 50% (Deutschmann
et al., 2018). The hired labor costs and the fertilizer costs are directly reported in the TZNPS.
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a scalar, I obtain the expected value of profit and the variance of profit,

µDijt = E[Ŷ D
ijt|xijt, hDijt]− CD

ijt(51)

vDijt = V ar[Ŷ D
ijt|xijt, hDijt].(52)

With these two main variables in hand, I begin to decipher the rationale of farmers’ agri-

cultural technology adoption decisions. I use the alternative-specific conditional logit model

(ASC logit), aka the McFadden’s choice model, to study the factors which influence the

farmer’s decision-making. In each farming season, farmers face 4 alternative technology

choices. Under the assumption that farmers are rational expected utility maximizer, they

would choose the technology which gives them the highest expected utility. Employing

farmers’ actual adoption decisions, I solve the impacts of potential factors.

Starting with a basic model as Equation 1,

(53) max
hNijt,h

F
ijt,h

I
ijt,h

B
ijt

EUijt = mµijt + ρvijt,

where the expected value of profits and the variance of profits for each technology adoption

scenario are the alternative-specific variables, and the year fixed effect is the case-specific

variable, i.e. farmer-plot-specific variable. I derive farmers’ responses to the profit value (m)

and the variance of profit (ρ), both the magnitude and the direction.

Furthermore, since existing works have offered different explanations for farmers’

adoption decisions, I enhance my basic decision-making model. I include 4 additional groups

of potential influencing factors, which have been shown in the literature,

(54) max
hNijt,h

F
ijt,h

I
ijt,h

B
ijt

EUijt = mµijt + ρvijt + φTZT
ijt + φLZL

ijt + φMZM
ijt + φCZC

ijt,

where ZT
ijt represents a group of distance variables which aim to capture the potential

difficulty of traveling to the market, ZL
ijt represents a group of family composition variables

which aim to capture the potential labor constraint, ZM
ijt represents a group of family financial

situation variables which aim to capture the potential credit constraint, and ZC
ijt represents a

group of crop choice variables. Using this more comprehensive model, I acquire more precise

estimates for the two core factors, the monetary attraction (m) and the risk aversion (ρ).

Lastly, to demonstrate the importance of a farmer’s risk aversion in the decision-
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making process, I estimate a model commonly used in the literature which only considers

about the mean of return,

(55) max
hNijt,h

F
ijt,h

I
ijt,h

B
ijt

EUijt = mµijt + φTZT
ijt + φLZL

ijt + φMZM
ijt + φCZC

ijt,

and compare it to my enhanced model, Equation 54, using the likelihood-ratio test.

6 Empirical Results

Analogous to the empirical strategy, empirical results are presented in 4 sub-sections: esti-

mates of farmers’ yields, estimates of the variability of farmers’ yields, adjusted estimates

of farmers’ yields, and the influences of various factors on farmers’ decisions of technology

adoptions.

6.1 Farmer’s Yield

In this first subsection, I present the estimations of the farmer’s production function.

Estimating the parameters of CRC model as explained in Section 5.1, I include the

following exogenous control variables: household location (rural/urban), household head’s

gender (male/not), household size, household member composition [the number of girls (age

< 12 years), the number of boys (age < 12 years), the number of women (age 12-60), and the

number of men (age 12-60)], average annual temperature, average precipitation amount of

the last 12 months, plot size, soil quality, plot slope, and plot fallowing history (ever yes/no).

The derived structural parameters and standard errors are shown in Table 5.

The relevant parameters are coefficients placed in front of technology adoption dum-

mies. Revisiting Equation 15, I obtain the expected returns to technology adoptions which

are β̃D + θDij , where β̃D is the average (additional) benefit of adopting technology D, and θDij

is the farmer-plot-specific (additional) returns to adopting technology D. The technology-

specific productivity, θDij , are predicted using projections of farmers’ adoption histories, as in

Equation 17 - 20. Given a two-year panel dataset, there are four possible adoption profiles
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for each technology: 1) never-adopter, someone who has not adopted the technology in any

year; 2) dis-adopter, someone who has adopted the technology in year 1, but not adopted

it in year 2; 3) late-adopter, someone who has not adopted the technology in year 1, but

adopted it in year 2; and 4) always-adopter, someone who has adopted the technology in both

years. Therefore, I derive 4 values of heterogeneous returns for each technology adoption.

In Figure 1, I graph the returns to adopting only fertilizer, adopting only inter-

cropping, and adopting both technologies; separated bars indicate each farmer adoption

profile. Since this research aims to examine the rationale of adoption and non-adoption, not

farmers’ technology switching behaviors, Figure 1 only shows the expected returns for the

never-adopter and the always-adopter. Estimations of the other two groups are presented as

secondary results, in the appendix Figure C.1.

Based on Figure 1, the estimated returns to adopting only fertilizer and adopting both

technologies are significantly positive for always-adopters, and are not statistically different

from zero for never-adopters. The returns of always-adopters are much higher than them

of never-adopters for those two technology sets. The specific coefficient for always-adopters

of adopting only fertilizer is 0.83, which means that the yield is 126.4% higher when the

always-adopter adopts it comparing to he/she does not adopt it.11 The specific coefficient

for always-adopters of adopting both technologies is 0.52, which indicates that the yield is

66.6% higher when the always-adopter adopts both fertilizer and intercropping comparing to

he/she does not adopt those two technologies. Considering those technologies offer a 126%

increase or a 67% increase in yield, respectively, these sizable expansions in yield could be

understood as a reason for adoption. Furthermore, the return coefficients to adopting both

technologies are -1.24 for never-adopters and 0.52 for always-adopters. These values do not

equal to the summation of return coefficients to only fertilizer and return coefficients to only

intercropping. This pattern indicates that the combination of two technologies produces a

different technology altogether. Lastly, for both never-adopters and always-adopters, the

11The percentage is calculated using the formula, 100× [e(ω−
1
2V ar(ω)) − 1], where ω is the coefficient.
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return coefficients to adopting only intercropping are approximately zero. If the rationale

for adoptions derives only from the expected returns, no farmers would ever adopt it. To the

contrary, in each season, about 44% of plots are intercropped. Because each technology has

multiple attributes, such as characteristics which affect the mean of yield, and characteristics

which influence the variance of yield, the rationale for adoptions could be multidimensional,

too.

6.2 Variability of Farmer’s Yield

After solving the structural parameters, I examine the impact of technologies on the variabil-

ity of farmers’ yields. Results are shown in Table 5. Adopting only intercropping significantly

decreases the conditional variance of log of yield by 13.1%, compared with using no technol-

ogy. Adopting only fertilizer increase the conditional variance of log of yield by 15.8%. The

impacts of those two adoptions are significantly different from each other. Adopting both

intercropping and fertilizer together shows a sign of reducing the conditional variance, while

the result is not statistically significant.

These findings offer two theories for farmers’ adoption decisions. Firstly, farmers may

adopt only intercropping to achieve the benefit of reductions in revenue variance. Secondly,

even though the expected returns to adopting only fertilizer are considerable, the attendant

risks are even larger. If farmers are risk-averse, they may choose to not adopt those tech-

nologies, as sacrificing the benefit of increasing expected returns to avoid carrying the costs

of fluctuations in revenues. Moreover, similar to the expected returns, the variance charac-

teristic of adopting both technologies presents itself as a unique technology, rather than a

simple aggregation of two technologies.

6.3 Adjusted Farmer’s Yield

Due to the heteroskedasticity in the production function, I re-estimate the CRC model with

a weight. The weights are specific to the technology, the same as the variance characteristics.
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Adjusted estimates of structural parameters are similar to coefficients obtained in the first

step. Results are listed in column “Third-Stage” of Table 4. Looking at Figure 2, one can

see that the patterns for returns to technology adoptions stay the same as before. The

returns to adopting only fertilizer and adopting both technologies are significantly positive

for always-adopters, while the returns to adopting only intercropping are always around zero.

6.4 Farmers’ Expected Utility

Using the estimations from the previous three steps and the lognormal distribution formula,

I obtain the conditional expected value and conditional variance of both log of yield and

yield, as shown in Table D.1. On average, adopting only fertilizer provides the largest

conditional expected value of yield, and the conditional expected values of yield for adopting

only intercropping and adopting neither technology are similar. For the conditional variance

of log of yield, adopting only intercropping represents the lowest variance, and adopting only

fertilizer leads to the highest variance.

Table 6 shows the farming costs for each technology adoption case. Adopting only

intercropping requires the least spending, around $27; while adopting only fertilizer uses the

most spending, around $63.

Table 7 presents farmers’ expected values of profit and variances of profit. On average,

farmers’ expectations of profits are approximately $79/acre for adopting neither technology,

$86/acre for adopting only fertilizer, $85/acre for adopting only intercropping, and $27/acre

for adopting both technology; while the variances of profits are $6159/acre, $12627/acre,

$5001/acre, and $3169/acre, respectively in the same order.12

12Adopting both technologies has the lowest average numbers for both those variables because some farm-
ers, i.e. never-adopters, experience negative conditional expected values of log of yield. This scenario lowers
the mean of conditional expected values of yield, and also affects both the mean and the variance of yield
with larger magnitudes after the log-normal translation.
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6.5 Farmers’ Technology Adoption Decisions

Bringing the farmers’ expected values of profit and variances of profit into the expected utility

function, I examine their influences on farmer’s technology adoption decisions through both

the basic model, Equation 53, and the enhanced model, Equation 54. The additional case-

specific variables included in the enhance model are 1) distance between home and plot (km),

distance between home and market (km), 2) household member composition [the number

of children (age < 12 years), the number of women (age 12-60), and the number of men

(age 12-60)], 3) household’s total asset values ($1000), salary as household’s main source

of cash income, business revenue as household’s main source of cash income, remittance as

household’s main source of cash income, 4) growing maize as the main crop, growing rice as

the main crop, growing cassava as the main crop, the average annual temperature, and the

average precipitation amount of the last 12 months.

The alternative-specific conditional logit model results are shown in Table 8. In both

the basic model and the enhanced model, the expected value of profit has a significant

positive effect on farmer’s expected utility, while the variance of profit has a significant

negative positive effect on farmer’s expected utility. The empirical results are consistent

with my hypothesis. Farmers’ technology adoption choices are notably impacted by both

the mean and variance of profits. Specifically, farmers are profit lover (m > 0) and risk

averse (ρ < 0).

The raw coefficients of the ASC logit model show the effect of 1-unit change in the

independent variable on the log odds of the dependent variable equaling 1. For a better inter-

pretation of the influences, I calculate the marginal effects at the means of the independent

variables using the enhanced specification, shown in Table 9. The marginal effects demon-

strate a clear pattern of how farmers respond to the expected profit and the risk associated

with the profit. For each technology, an increase in its own expected profit would raise the

probability of it being adopted, and an increase in the expected profit of other technologies

would drop the probability of it being adopted. For example, for 1 dollar increase in the
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expected profit of adopting only fertilizer, it increases the probability that farmers adopt it

by 0.0026 percentage points, while for 1 dollar increase in the expected profit of adopting

only intercropping, it decreases the probability that farmers adopt only fertilizer by 0.0014

percentage points.

The effect of variance is exactly opposite. For each technology, an increase in its own

profit variance would decreases the probability of it being adopted, and an increase in the

profit variance of other technologies would raise the probability of it being adopted. Because

the variance of profits usually spreads out, I choose to compute the marginal effect using

$1000-unit. As shown in Table 9, for 1000 dollar increase in the profit variance of adopting

only fertilizer, it decreases the probability that farmers adopt it by 0.0057 percentage points,

while for 1000 dollar increase in the profit variance of adopting only intercropping, it increases

the probability that farmers adopt only fertilizer by 0.0030 percentage points.

Those marginal effects may look small, but both the expected value of profit and

the variance of profit play vital roles in farmer’s decision making process. I predict the

probabilities of choosing each technology using the the enhanced specification, shown in

Table 10. If I estimate the probabilities at the means of the expected value of profit and at

the means of the variance of profit, the probability of adopting only fertilizer is 0.043 and

the probability of adopting only intercropping is 0.506. On the other hand, if I calculate the

probabilities at the means of the expected value of profit and set the variance of profit to

be zero, the probability of adopting only fertilizer dramatically increases to 0.106 since the

risk is eliminated, while the probability of adopting only intercropping drops to 0.438, as the

benefit is taking away.

In addition, to emphasize the importance of farmers’ risk aversion, I compare the

model used in the literature, Equation 55, and my enhanced model, Equation 54. The χ2

statistic of the likelihood-ratio test is 213.05, with a probability 0.000. The result shows that

by adding in the consideration of the variance of profit, the farmer’s decision-making model

is significantly improved.
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7 Robustness Checks

To address the concern that farmers may adopt certain agricultural technologies according

to the crops they grow, I conduct following analysis.

First of all, I examine the technology adoptions across various crops. Focusing on

crops that have grown on at least 3% of total plots over either farming season, this criteria

limits to 9 crops - maize, rice, beans, groundnuts, sorghum, sweet potatoes, cow pea, pigeons

pea, and sunflower. The adoption rates of technologies over those 9 crops are shown in D.2.

All four technologies have been used with those crops. There is no special selection of

technology due to the crop choice.

In addition, I restrict the analysis sample to plots that have grown at least one of

the three most common crops - maize, rice, and beans, and repeat all 4 steps of empirical

estimations. The distribution of returns to adoptions are displayed in Figure 3 and Figure

4. For adopting only fertilizer and adopting both technologies, always-adopters enjoy sig-

nificantly positive returns, while adopting only intercropping does not generate additional

returns. The effects of adopting technologies on the variability of yields are shown in Table

11. Similar as results from the full sample, adopting only intercropping and adopting both

technologies reduce the variance of yields, while adopting only fertilizer increases the vari-

ance. Yet, due to a smaller sample size, results are not statistical significant. The impacts

of the expected value of profit and the variance of profit on farmer’s decisions are presented

in Table 12 and Table 13. Farmers respond to the expected value of profit positively and the

variance of profit negatively. If removing the production risk associated with fertilizer, the

probability of adopting only fertilizer increases from 0.057 to 0.074. Empirical results are

reassuring, as estimations using the sub-sample show the same patterns with the estimations

using the full sample.
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8 Conclusion

Within the literature about agricultural technology adoption, numerous works have been

conducted to examine and explain the low and unstable adoption rates in Sub-Saharan Africa.

The majority of studies have focused on the obstacles that caused these insufficient usages,

and believed that adoption rates should be and could be boosted after some reforms. This

research offers an alternative opinion that both the technology adoption and non-adoption

decisions could be optimal, due to the heterogeneities in farmers and in technologies. Since

farmers have different productivities in farming, they enjoy different returns to agricultural

technology adoptions. In addition, because farmers care about both the expectation and

the risk, the analysis of farmers’ choices should consider multiple moments of the profit

distribution.

To understand the rationale behind farmers’ decisions about agricultural technology

adoption, I construct a farmer’s decision-making model which explicitly takes into account

both the expected value and the variance of a farmer’s profits. Within the expected util-

ity function, I build the farmer’s production function which allows heterogeneous returns,

selection bias, and heterogeneous variances in the technology adoption.

Using the Tanzania Living Standards Measurement Study (LSMS) panel dataset and

four technology choices, I estimate my farmer’s decision-making model. With a completed

empirical estimation, I have the expected returns of each technology for each group of farmers,

the variance effects of each technology, the farmers’ response to profit expectations, and the

farmers’ risk aversion level.

In general, adopting only fertilizer raises both the expected return of revenue and

the variance of revenue; adopting only intercropping does not change the expected return of

revenue, but reduces the variance of revenue significantly; and adopting both technologies

increases the expected return of revenue for subgroup of farmers while at the same time causes

variations in the revenue. Which technology to adopt depends on farmers’ technology-specific

productivities, their response to the expected profit, which is shown to be positive as farmers
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are money lover, and their response to the variance of profit, which is shown to be negative

as farmers are risk averse.

Unraveling the farmer’s decision-making model, the rationales behind farmers’ deci-

sions about agricultural technology adoption are been presented. These empirical outcomes

can explain the low adoption rates of an intensively promoted higher-average-return technol-

ogy such as fertilizer, and justify the high adoption rates of a seemingly unprofitable tech-

nology such as intercropping. Future policy suggestions, for either technology promotions or

dis-promotions, should take into account of the individual idiosyncrasy, the distribution of

technology returns, and full aspects of farmers’ concerns, i.e. both the expected value and

the variance of profits.
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Figures

Figure 1: Distribution of Predicted Returns to Adoptions (Full Sample)

Note: This figure is created using all plots from the analysis sample. Never adopter refers
to farmer who adopted the technology in neither farming season; always adopters refers
to farmer who adopted the technology in both farming seasons. The boxes represent
predicted returns, which are calculated as β + θ. The bars represent the 95% confidence
levels, which are calculated through bootstrapping 3075 iterations.
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Figure 2: Distribution of Predicted Weighted Returns to Adoptions (Full Sample)

Note: This figure is created using all plots from the analysis sample. Never adopter refers
to farmer who adopted the technology in neither farming season; always adopters refers
to farmer who adopted the technology in both farming seasons. The boxes represent
predicted returns, which are calculated as β + θ. The bars represent the 95% confidence
levels, which are calculated through bootstrapping 3050 iterations.
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Figure 3: Distribution of Predicted Returns to Adoptions (Sub-Sample)

Note: This figure is created using plots which have grown at least one of the three most
common crops (maize, paddy, beans) in both farming seasons from the analysis sample.
Never adopter refers to farmer who adopted the technology in neither farming season;
always adopters refers to farmer who adopted the technology in both farming seasons.
The boxes represent predicted returns, which are calculated as β + θ.
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Figure 4: Distribution of Predicted Weighted Returns to Adoptions (Sub-Sample)

Note: This figure is created using plots which have grown at least one of the three most
common crops (maize, paddy, beans) in both farming seasons from the analysis sample.
Never adopter refers to farmer who adopted the technology in neither farming season;
always adopters refers to farmer who adopted the technology in both farming seasons.
The boxes represent predicted returns, which are calculated as β + θ.
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Tables

Table 1: Descriptive Statistics (Household Level) - Household Characteristics

Household Level 2010-2011 2012-2013
Variables Mean S.D. Mean S.D.
Household is at rural 0.87 0.34 0.86 0.35
Household head is male 0.77 0.42 0.76 0.43
Household head works in agriculture 0.84 0.36 0.85 0.36
Household size 5.84 3.30 5.76 3.30
Number of female children (age < 12) 1.10 1.22 1.05 1.20
Number of male children (age < 12) 1.05 1.16 1.02 1.17
Number of female active members 1.68 1.20 1.65 1.18
Number of male active members 1.64 1.32 1.64 1.29
Number of female elder members (age > 60) 0.21 0.43 0.22 0.43
Number of male elder members (age > 60) 0.17 0.39 0.17 0.39
Average annual temperature (◦C) 22.60 2.59 22.61 2.58
Average rainfall in the past 12 month (mm) 800.14 215.78 802.99 215.27
Number of households 1628 1628

Note: The descriptive statistics are created using the analysis sample.
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Table 2: Descriptive Statistics (Plot Level) - Plot Characteristics

Plot Level 2010-2011 2012-2013
Variables Mean S.D. Mean S.D.
Plot quality and inputs
Plot area (acre) 2.67 5.78 2.93 6.40
Plot soil quality 2.41 0.61 2.43 0.60
Plot slope steepness 1.37 0.55 1.33 0.53
Plot has fallowed ever 0.06 0.23 0.02 0.16
Household could sell the plot 0.74 0.44 0.78 0.41
Pesticide usage ($) 0.83 11.95 0.77 5.31
Family labor usage (days per acre)
land prep. and planting 23.33 35.49 24.71 34.81
weeding 21.80 32.55 23.08 33.63
harvesting 17.07 29.51 15.79 25.67
total 62.53 84.30 66.48 89.15

Hired workers usage (dollar per acre)
land prep. and planting 1.96 8.27 2.82 11.21
weeding 1.70 6.72 2.57 14.06
harvesting 1.14 4.99 2.05 10.04
total 4.87 16.10 7.65 28.75

Harvest value (dollar per acre)
value 106.91 505.55 142.68 318.48

Number of plots 2523 2523

Note: The descriptive statistics are created using the analysis sample.

44



H
eterogeneous

Farm
ers’Technology

A
doption

D
ecisions

S.Jessica
Zhu

Table 3: Descriptive Statistics (Plot Level) - Adoptions of Agricultural Technologies

(number of plots) Adoption in 2012-2013
Adoption in 2010-2011 <1> Neither <2> Fertilizer <3> Intercropping <4> Both Total
<1> Adopted neither technology 557 61 358 21 997
<2> Adopted only fertilizer 44 82 20 51 197
<3> Adopted only intercropping 319 22 729 43 1113
<4> Adopted both technologies 28 36 44 108 216
Total 948 201 1151 223 2523

(percentage of plots) Adoption in 2012-2013
Adoption in 2010-2011 <1> Neither <2> Fertilizer <3> Intercropping <4> Both Total
<1> Adopted neither technology 22.08% 2.42% 14.19% 0.83% 39.52%
<2> Adopted only fertilizer 1.74% 3.25% 0.79% 2.02% 7.81%
<3> Adopted only intercropping 12.64% 0.87% 28.89% 1.70% 44.11%
<4> Adopted both technologies 1.11% 1.43% 1.74% 4.28% 8.56%
Total 37.57% 7.97% 45.62% 8.84% 100.0%

Note: The descriptive statistics are created using the analysis sample.
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Table 4: Heterogeneous Return to Technology Adoption: CRC Model OMD Structural Estimates (Full-Sample)

First- Third- First- Third- First- Third- First- Third-
Stage Stage Stage Stage Stage Stage Stage Stage

λF0 = -0.218 -0.060 λI0 = 0.012 -0.016 λB0 = -0.239 -0.168 λN0 = -0.029 -0.030
(1.657) (1.327) (2.845) (3.565) (1.339) (1.255) (0.058) (0.057)

λF1 = 1.563 0.296 λI1 = -0.021 0.022 λB1 = 1.813 1.264 λN1 = -0.076 -0.073
(13.911) (10.997) (4.684) (5.774) (10.349) (9.927) (0.109) (0.109)

λF2 = 1.784 0.521 λI2 = 0.086 0.134 λB2 = 1.898 1.353 λN2 = -0.007 -0.006
(13.916) (11.000) (4.684) (5.773) (10.356) (9.928) (0.112) (0.110)

λF3 = -1.411 -0.144 λI3 = -0.147 -0.189 λB3 = -1.952 -1.403 λN3 = 0.277 0.278
(13.916) (11.001) (4.686) (5.776) (10.351) (9.927) (0.121) (0.120)

β̃F = -0.888 0.218 β̃I = 0.012 -0.005 β̃B = -1.000 -0.527
(12.264) (9.680) (1.840) (2.213) (9.027) (8.695)

Note: The analysis uses all plots from the analysis sample. Standard errors are calculated using the bootstrapping method and
reported in parentheses. In the first stage, the bootstrap conducts 3075 iterations; in the third stage, the bootstrap conducts 3050
iterations. OMD is optimal weighted minimum distance, where the weight matrix is the inverted reduced form variance-covariance
matrix. Specifications in both stages include exogenous covariates: household location (rural/urban), household head’s gender
(male/not), household size, household member composition [the number of girls (age < 12 years), the number of boys (age < 12
years), the number of women (age 12-60), and the number of men (age 12-60)], average annual temperature, average precipitation
amount of the last 12 months, plot size, soil quality, plot slope, and plot fallowing history (ever yes/no).
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Table 5: Variability of Farmer’s Yield (Full-Sample)

Ln of Conditional Variance of Ln of Yield
log{V ar(yijt|xijt, h

D
ijt)}

Adopt only fertilizer 0.158
(0.137)

Adopt only intercropping -0.131*
(0.073)

Adopt both technologies -0.110
(0.123)

N 5046
R 0.002
Intercropping = Fertilizer (P − V alue) 0.031
Fertilizer = Both Tech. (P − V alue) 0.090

Note: The analysis uses all plots from the analysis sample. The dependent vari-
able is the natural logarithm of conditional variance of the natural logarithm of
yield. It is estimated as the natural logarithm of the square of the residual term
of the first stage production function estimation. Standard errors are clustered
at the cluster level, i.e the enumeration area for the urban areas and the village
for the rural areas, and reported in parentheses.
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Table 6: Descriptive Statistics - Farming Costs

N Mean
Cost Labor Fertilizer Total
Adopt neither technology 5046 35.81 0.00 35.81
Adopt only fertilizer 5046 44.61 18.04 62.65
Adopt only intercropping 5046 27.22 0.00 27.22
Adopt both technologies 5046 31.46 15.92 47.38

Note: The descriptive statistics are created using the analysis sample.
Farming costs are varied by technolgies and villages. Labor costs are the
total costs of both family labors and hired labors.

Table 7: Descriptive Statistics - Expected Value of Profit
and Variance of Profit

Profit N Mean S.D.
Expected value
Adopt neither technology 5046 79.09 55.38
Adopt only fertilizer 5046 85.77 78.32
Adopt only intercropping 5046 84.67 53.43
Adopt both technologies 5046 27.47 62.59
Variance
Adopt neither technology 5046 6158.58 9418.00
Adopt only fertilizer 5046 12627.42 18361.06
Adopt only intercropping 5046 5001.87 7493.69
Adopt both technologies 5046 3169.33 7373.44

Note: The descriptive statistics are created using the analysis sam-
ple. Profits are calculated as farming revenus minus farming cost.
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Table 8: Alternative-Specific Conditional Logit Model: the Impacts of
the Expectated Value of Profit and the Variance of Profit (Full-Sample)

(1) (2) (3)
Basic Enhanced Mean-Only

Eq. (53) Eq. (54) Eq. (55)
Expected value of profit 0.059*** 0.063*** 0.039***
($/acre) (0.002) (0.002) (0.001)

Variance of profit -0.119*** -0.138***
($1000/acre) (0.007) (0.008)

Alternative-Specific Variables Y Y Y
Case-Specific Variables N Y Y
Year Fixed Effect Y Y Y
N 20184 20184 20184
Case 5046 5046 5046
Likelihood-ratio test between (2) and (3): Probability > χ2 = 0.000.

Note: The analysis uses all plots from the analysis sample. Standard errors are re-
ported in parentheses. Case-specific variables in specifications (2) and (3) are the
distance between home and plot (km), the distance between home and market (km),
household member composition [the number of children (age < 12 years), the number
of women (age 12-60), and the number of men (age 12-60)], average annual temper-
ature, average precipitation amount of the last 12 months, household’s asset values
($1000), salary as household’s main source of cash income (yes/no), business rev-
enues as household’s main source of cash income (yes/no), remittance as household’s
main source of cash income (yes/no), growing maize as the main crop (yes/no), grow-
ing rice as the main crop (yes/no), and growing cassava as the main crop (yes/no).
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Table 9: Alternative-Specific Conditional Logit Model: the Marginal Effects of the Expec-
tated Value of Profit and the Variance of Profit (Full-Sample)

Probability of ...
Adopt Adopt Adopt Adopt

Variable neither tech. only fertilizer only intercrop. both tech.
Expected value of profit ($/acre) of ...
Adopt neither technology 0.0155 -0.0012 -0.0141 -0.0001

(0.000) (0.000) (0.000) (0.000)
Adopt only fertilizer -0.0012 0.0026 -0.0014 -0.0000

(0.000) (0.000) (0.000) (0.000)
Adopt only intercropping -0.0141 -0.0014 0.0156 -0.0001

(0.000) (0.000) (0.000) (0.000)
Adopt both technologies -0.0001 -0.0000 -0.0001 0.0003

(0.000) (0.000) (0.000) (0.000)
Variance of profit ($1000/acre) of ...
Adopt neither technology -0.0340 0.0026 0.0311 0.0003

(0.000) (0.000) (0.000) (0.000)
Adopt only fertilizer 0.0026 -0.0057 0.0030 0.0000

(0.000) (0.000) (0.000) (0.000)
Adopt only intercropping 0.0311 0.0030 -0.0344 0.0003

(0.000) (0.000) (0.000) (0.000)
Adopt both technologies 0.0003 0.0000 0.0003 -0.0006

(0.000) (0.000) (0.000) (0.000)
Predicted probability 44.607% 4.296% 50.644% 0.450%

Note: The analysis uses all plots from the analysis sample. P-values are reported in parentheses. The
marginal effects are estimated following the Enhanced specification, column (2) of Table 9. They are cal-
culated at the means of the independent variables by using the estimation sample.
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Table 10: Alternative-Specific Conditional Logit Model:
Predicted Probability of Adoption (Full-Sample)

(1) (2)
Model from if set

actual model variance to 0
Adopt neither technology 0.446 0.453
Adopt only fertilizer 0.043 0.106
Adopt only intercropping 0.506 0.438
Adopt both technologies 0.005 0.003

Note: The analysis uses all plots from the analysis sample. The pre-
dicted probabilities of choosing each alternative (technology) are es-
timated following the Enhanced specification, column (2) of Table 9.
Only one alternative per case can be chosen. In specification (1),
the probabilities are calculated at the means of the expected value of
profit and the variance of profit. In specification (2), the probabilities
are calculated at the means of the expected value of profit and set the
variance of profit to be zero.
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Table 11: Variability of Farmer’s Yield (Sub-Sample)

Ln of Conditional Variance of Ln of Yield
log{V ar(yijt|xijt, h

D
ijt)}

Adopt only fertilizer 0.116
(0.146)

Adopt only intercropping -0.104
(0.083)

Adopt both technologies -0.017
(0.125)

N 3862
R 0.001
Intercropping = Fertilizer (P − V alue) 0.128
Fertilizer = Both Tech. (P − V alue) 0.433

Note: The analysis uses plots which have grown at least one of the three most
common crops (maize, rice, beans) in both farming seasons from the analysis
sample. The dependent variable is the natural logarithm of conditional variance
of the natural logarithm of yield. It is estimated as the natural logarithm of the
square of the residual term of the first stage production function estimation.
Standard errors are clustered at the cluster level, i.e the enumeration area for
the urban areas and the village for the rural areas, and reported in parentheses.
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Table 12: Alternative-Specific Conditional Logit Model: the Impacts of
the Expectated Value of Profit and the Variance of Profit (Sub-Sample)

(1) (2) (3)
Basic Enhanced Mean-Only

Eq. (53) Eq. (54) Eq. (55)
Expected value of profit 0.018*** 0.026*** 0.019***
($/acre) (0.001) (0.002) (0.001)

Variance of profit -0.018** -0.048***
($1000/acre) (0.009) (0.009)

Alternative-Specific Variables Y Y Y
Case-Specific Variables N Y Y
Year Fixed Effect Y Y Y
N 15448 15448 15448
Case 3862 3862 3862
Likelihood-ratio test between (2) and (3): Probability > χ2 = 0.000.

Note: The analysis uses plots which have grown at least one of the three most com-
mon crops (maize, rice, beans) in both farming seasons from the analysis sample.
Standard errors are reported in parentheses. Case-specific variables in specifications
(2) and (3) are the distance between home and plot (km), the distance between home
and market (km), household member composition [the number of children (age <
12 years), the number of women (age 12-60), and the number of men (age 12-60)],
average annual temperature, average precipitation amount of the last 12 months,
household’s asset values ($1000), salary as household’s main source of cash income
(yes/no), business revenues as household’s main source of cash income (yes/no), re-
mittance as household’s main source of cash income (yes/no), growing maize as the
main crop (yes/no), growing rice as the main crop (yes/no), and growing cassava as
the main crop (yes/no).
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Table 13: Alternative-Specific Conditional Logit Model:
Predicted Probability of Adoption (Sub-Sample)

(1) (2)
Model from if set

actual model variance to 0
Adopt neither technology 0.408 0.396
Adopt only fertilizer 0.057 0.074
Adopt only intercropping 0.481 0.485
Adopt both technologies 0.054 0.045

Note: The analysis uses plots which have grown at least one of the
three most common crops (maize, rice, beans) in both farming seasons
from the analysis sample. The predicted probabilities of choosing each
alternative (technology) are estimated following the Enhanced spec-
ification, column (2) of Table 13. Only one alternative per case can
be chosen. In specification (1), the probabilities are calculated at the
means of the expected value of profit and the variance of profit. In
specification (2), the probabilities are calculated at the means of the
expected value of profit and set the variance of profit to be zero.
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A Restrictions on Parameters between the Structural Equa-

tions and Reduced Form Equations

Table A.1: Restrictions on Parameters between the Structural Equa-
tions and Reduced Form Equations

η1 = β̃F + λF0 + λF1 − λN1 − λN3 η16 = −(λN1 + λN3 )

η2 = −(λN2 + λN3 ) η17 = β̃F + λF0 + λF2 − λN2 − λN3
η3 = λF2 + λF3 + λN3 η18 = λF1 + λF3 + λN3
η4 = β̃I + λI0 + λI1 − λN1 − λN3 η19 = −(λN1 + λN3 )

η5 = −(λN2 + λN3 ) η20 = β̃I + λI0 + λI2 − λN2 − λN3
η6 = λI2 + λI3 + λN3 η21 = λI1 + λI3 + λN3
η7 = β̃I + λB0 + λB1 − λN1 − λN3 η22 = −(λN1 + λN3 )

η8 = −(λN2 + λN3 ) η23 = β̃B + λB0 + λB2 − λN2 − λN3
η9 = λB2 + λB3 + λN3 η24 = λB1 + λB3 + λN3
η10 = λN3 η25 = λN3
η11 = λN3 η26 = λN3
η12 = λN3 η27 = λN3
η13 = λN3 η28 = λN3
η14 = λN3 η29 = λN3
η15 = λN3 η30 = λN3

Note: There are 15 structural parameters and 30 reduced form coefficients.
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B Variability of Farmer’s Production

B.1 Variance of Yield

The detailed steps for obtaining the variance of yield are,

var{yijt} = var{βNt + xijtγ + β̃FhFijt + β̃IhIijt + β̃BhBijt(56)

+θij + θFijh
F
ijt + θIijh

I
ijt + θBijh

B
ijt + eijt}

= var{βNt }+ var{xijtγ}+ var{β̃FhFijt}+ var{β̃IhIijt}+ var{β̃BhBijt}

+var{θij}+ var{θFijhFijt}+ var{θIijhIijt}+ var{θBijhBijt}+ var{eijt}

= γ2var{xijt}+ (̃β
F

)2var{hFijt}+ (̃β
I
)2var{hIijt}+ (β̃B)2var{hBijt}

+var{θij}+ var{θFijhFijt}+ var{θIijhIijt}+ var{θBijhBijt}+ var{eijt}.

The second equality is based on the independence of each term. The third equality is due

to the feature of a structural model - the true values of all βs are constant.

B.2 Conditional Variance of Yield

The detailed steps for obtaining the conditional variance of yields are,

V ar{yijt|xijt, hDijt}(57)

= γ2V ar{xijt|xijt, hDijt}+ (̃β
F

)2V ar{hFijt|xijt, hDijt}+ (̃β
I
)2V ar{hIijt|xijt, hDijt}

+(β̃B)2V ar{hBijt|xijt, hDijt}+ V ar{θij|xijt, hDijt}+ V ar{θFijhFijt|xijt, hDijt}

+V ar{θIijhIijt|xijt, hDijt}+ V ar{θBijhBijt|xijt, hDijt}+ V ar{eijt|xijt, hDijt}

= V ar{θij|xijt, hDijt}+ V ar{θFijhFijt|xijt, hDijt}

+V ar{θIijhIijt|xijt, hDijt}+ V ar{θBijhBijt|xijt, hDijt}+ V ar{eijt|xijt, hDijt}

= V ar{eijt|xijt, hDijt}.

The third equality is because V ar{X|X} = 0. The fourth equality comes from the the

assumption that θij, θFij , θIij, and θBij are fixed unobserved farmer-plot characteristics, such

as V ar{θDij} = 0.
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After substituting the definition of error term in to the previous equation, I get the

elaborated conditional variance of yields as

V ar{yijt|xijt, hDijt} = V ar{eijt|xijt, hDijt}(58)

= V ar{
∑
d∈D

(αd)
1
2hdijtεijt|xijt, hDijt}

=
∑
d∈D

V ar{(αd)
1
2hdijtεijt|xijt, hDijt}

=
∑
d∈D

{E[((αd)
1
2hdijtεijt)

2]− [E((αd)
1
2hdijtεijt)]

2|xijt, hDijt}

=
∑
d∈D

{E[((αd)
1
2hdijt)

2]E[ε2ijt]− [E((αd)
1
2hdijt)E(εijt)]

2|xijt, hDijt}

=
∑
d∈D

{E[((αd)
1
2hdijt)

2]|xijt, hDijt}

=
∑
d∈D

{E[αd(hdijt)
2]|xijt, hDijt}

= E[αN(hNijt)
2|xijt, hDijt] + E[αF (hFijt)

2|xijt, hDijt]

+E[αI(hIijt)
2|xijt, hDijt] + E[αB(hBijt)

2|xijt, hDijt]

= E[αNhNijt|xijt, hDijt] + E[αFhFijt|xijt, hDijt]

+E[αIhIijt|xijt, hDijt] + E[αBhBijt|xijt, hDijt],

where E[ε2ijt] = 1 because V ar[εijt] = E[ε2ijt]− [E(εijt)]
2 = 1 and E(εijt) = 0.
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C Figures

Figure C.1: Distribution of Predicted Returns to Adoptions

Note: This figure is created using all plots from the analysis sample. Never adopter
refers to farmer who adopted the technology in neither farming season; early adopter
refers to farmer who adopted the technology in the first farming season but not in
the second farming season; late adopter refers to farmer who adopted the technology
in the second farming season but not in the first farming season; always adopters
refers to farmer who adopted the technology in both farming seasons. The boxes
represent predicted returns, which are calculated as β + θ. The bars represent the
95% confidence levels, which are calculated through bootstrapping 3075 iterations.
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Figure C.2: Distribution of Predicted Weighted Returns to Adoptions

Note: This figure is created using all plots from the analysis sample. Never adopter refers
to farmer who adopted the technology in neither farming season; early adopter refers
to farmer who adopted the technology in the first farming season but not in the second
farming season; late adopter refers to farmer who adopted the technology in the second
farming season but not in the first farming season; always adopters refers to farmer who
adopted the technology in both farming seasons. The boxes represent predicted returns,
which are calculated as β + θ. The bars represent the 95% confidence levels, which are
calculated through bootstrapping 3050 iterations.
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Figure C.3: Distribution of Predicted Returns to Adoptions

Note: This figure is created using plots which have grown at least one of the three most
common crops (maize, paddy, beans) in both farming seasons from the analysis sample.
Never adopter refers to farmer who adopted the technology in neither farming season;
early adopter refers to farmer who adopted the technology in the first farming season but
not in the second farming season; late adopter refers to farmer who adopted the technology
in the second farming season but not in the first farming season; always adopters refers
to farmer who adopted the technology in both farming seasons. The boxes represent
predicted returns, which are calculated as β + θ.
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Figure C.4: Distribution of Predicted Weighted Returns to Adoptions

Note: This figure is created using plots which have grown at least one of the three most
common crops (maize, paddy, beans) in both farming seasons from the analysis sample.
Never adopter refers to farmer who adopted the technology in neither farming season;
early adopter refers to farmer who adopted the technology in the first farming season but
not in the second farming season; late adopter refers to farmer who adopted the technology
in the second farming season but not in the first farming season; always adopters refers
to farmer who adopted the technology in both farming seasons. The boxes represent
predicted returns, which are calculated as β + θ.
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D Tables

Table D.1: Descriptive Statistics - Conditional Expected
Value of Yield and Conditional Variance of Yield

Panel A: Expected Value of N Mean S.D.
log of yield
Adopt neither technology 5046 4.48 0.48
Adopt only fertilizer 5046 4.70 0.50
Adopt only intercropping 5046 4.47 0.47
Adopt both technologies 5046 3.95 0.63
yield
Adopt neither technology 5046 114.90 54.29
Adopt only fertilizer 5046 148.42 73.68
Adopt only intercropping 5046 111.89 52.36
Adopt both technologies 5046 74.85 61.94

Panel B: Variance of N Mean S.D.
log of yield
Adopt neither technology 5046 0.32
Adopt only fertilizer 5046 0.38
Adopt only intercropping 5046 0.28
Adopt both technologies 5046 0.29
yield
Adopt neither technology 5046 6158.58 9418.00
Adopt only fertilizer 5046 12627.42 18361.06
Adopt only intercropping 5046 5001.87 7493.69
Adopt both technologies 5046 3169.33 7373.44

Note: The descriptive statistics are created using the analysis sample.
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Table D.2: Descriptive Statistics - Technology Adoption Rates for Various Crops

Panel A: Farming season 2010-2011
Adoption Rate of Technology over All Plots Grown Certain Crop

Crop Neither Fertilizer Intercropping Both # of Plots % of Plots
Maize 27.53% 7.18% 53.93% 11.36% 2368 39.47%
Rice 74.05% 10.02% 14.72% 1.21% 659 10.98%
Beans 11.62% 2.91% 64.83% 20.64% 654 10.90%
Groundnut 20.38% 2.19% 66.14% 11.29% 319 5.32%
Sorghum 29.94% 0.00% 69.11% 0.96% 314 5.23%
Sweet Potatoes 31.39% 2.24% 61.43% 4.93% 223 3.72%
Cow Pea 6.78% 0.56% 83.05% 9.60% 177 2.95%
Pigeon Pea 5.88% 0.59% 78.82% 14.71% 170 2.83%
Sunflower 14.97% 1.36% 64.63% 19.05% 147 2.45%

Panel B: Farming season 2012-2013
Adoption Rate of Technology over All Plots Grown Certain Crop

Crop Neither Fertilizer Intercropping Both # of Plots % of Plots
Maize 28.03% 6.46% 55.89% 9.61% 3079 38.84%
Beans 13.58% 2.19% 66.97% 17.26% 869 10.96%
Rice 68.57% 10.81% 18.76% 1.86% 805 10.15%
Groundnut 20.55% 0.64% 67.37% 11.44% 472 5.95%
Sweet Potatoes 35.99% 0.82% 57.97% 5.22% 364 4.59%
Sorghum 33.33% 0.31% 63.58% 2.78% 324 4.09%
Pigeon Pea 5.07% 0.36% 88.77% 5.80% 276 3.48%
Sunflower 21.14% 1.22% 57.32% 20.33% 246 3.10%
Cow Pea 6.56% 0.00% 85.66% 7.79% 244 3.08%

Note: The descriptive statistics are created using the analysis sample.
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